NEW: Example of putting python3 library in lambda layer

This commit is contained in:
xpk 2024-08-26 15:20:10 +08:00
parent 8f88d2da6f
commit 1c1c75d5e4
Signed by: xpk
GPG Key ID: CD4FF6793F09AB86
200 changed files with 41738 additions and 0 deletions

View File

@ -0,0 +1,37 @@
# This file is maintained automatically by "tofu init".
# Manual edits may be lost in future updates.
provider "registry.opentofu.org/hashicorp/archive" {
version = "2.5.0"
hashes = [
"h1:yKfaZ2J55VStfwgrdXX3ApAnWBZlKvOXHlS0Ucwujfw=",
"zh:0e7c2d37160cab82a9aa9471f82a9b891ace9612de3f65f3a4c4adc11ed79e0e",
"zh:13bfe59219ff933a6f110b7ec7516b6a908317d1c356cd097799d492770a72b0",
"zh:1e0b22c18c5b3b20a6df090e1fa1e3f83e4f71be94a4f4cf48e62618d2d10c6a",
"zh:2898e058ae3e3e678967f928d3d20e4035b0db7543d32f06a4b33e0859ffde90",
"zh:591b2f97ef1ec0f284994dedb33b82b01e07c706d32cba7df7ff249453a6e52f",
"zh:69a49b4e0ef3a6a23c1ea08931b8f287d39ecf9e2706289f8f67c5ad1266817f",
"zh:89463997a628373ecedfdd9129235cd6d5f2d3d6a7ca45b0b13cf64c60e245d4",
"zh:95ab51e9e743fcec8d439a13e9c00550e7ab5424994d06401d7914922aaad690",
"zh:d53f08bf3257f4f54d3aa0e0f427f9bdb41f5836bfe747d0b52176ed0bce28f5",
"zh:dfb3c0c2420290573f21cbab355817daceb3ca7db5e09f575c53022bdcb5e0e5",
]
}
provider "registry.opentofu.org/hashicorp/aws" {
version = "5.64.0"
constraints = ">= 4.40.0"
hashes = [
"h1:5X3S/+HlvmebHPYrKPGmXS+a7iJ7OyW26fjrpvEAKCQ=",
"zh:0751c0c154b4b6cee673bb047f95c527f984e3066206dceea69a5357db4157cb",
"zh:375f116ae66a90f7c455852606acd78e4e005e476abcf681cea6883c8ca5b592",
"zh:4ad242818b4ca904d69d8653edd652e7c27261a33cc32bff894d4a4e76f68e5c",
"zh:596d8180e5c18d1a3b7d234966df33fbab7012d3e4e964d891787898f771f979",
"zh:8aa86de8fccb3a0afbe71c4b2eb2d0fd413b2fd767b5d76731cd87c9cc648585",
"zh:93b429af32dc39b8f90081c2067adb37541d89033930034fb6307837b8a20d15",
"zh:9bde1c074b2122ab6374832b690c7164a484f50e22448cba272aaff2d6957f01",
"zh:d54f3da5a88b8d4eca1792114c9aa07a22be0691fc0b1109dfe667f61c03840b",
"zh:e5199b5b7a6d7c7cce17d345d56d06779ec4b00e95339f7fa628085725b139a2",
"zh:f4e26c016eccef5d36ed9adec6d3abca83a9c5544215c89002bae9ffd6b64be4",
]
}

View File

@ -0,0 +1 @@
/home/kn/.terraform.d/plugin-cache/registry.opentofu.org/hashicorp/archive/2.5.0/linux_amd64

View File

@ -0,0 +1 @@
/home/kn/.terraform.d/plugin-cache/registry.opentofu.org/hashicorp/aws/5.64.0/linux_amd64

View File

@ -0,0 +1,6 @@
# Prepare lambda-layer1 with the following command.
The path is hard-required by AWS. See https://docs.aws.amazon.com/lambda/latest/dg/packaging-layers.html
```bash
pip install requests -t python/lib/python3.12/site-packages/
```

View File

@ -0,0 +1,10 @@
# reference: https://aws.amazon.com/premiumsupport/knowledge-center/start-stop-lambda-eventbridge/
import requests
def lambda_handler(event, context):
r = requests.get('https://ipinfo.io/')
return {
"HttpResponseCode": r.status_code
}

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,8 @@
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import re
import sys
from charset_normalizer.cli import cli_detect
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
sys.exit(cli_detect())

View File

@ -0,0 +1,20 @@
This package contains a modified version of ca-bundle.crt:
ca-bundle.crt -- Bundle of CA Root Certificates
This is a bundle of X.509 certificates of public Certificate Authorities
(CA). These were automatically extracted from Mozilla's root certificates
file (certdata.txt). This file can be found in the mozilla source tree:
https://hg.mozilla.org/mozilla-central/file/tip/security/nss/lib/ckfw/builtins/certdata.txt
It contains the certificates in PEM format and therefore
can be directly used with curl / libcurl / php_curl, or with
an Apache+mod_ssl webserver for SSL client authentication.
Just configure this file as the SSLCACertificateFile.#
***** BEGIN LICENSE BLOCK *****
This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain
one at http://mozilla.org/MPL/2.0/.
***** END LICENSE BLOCK *****
@(#) $RCSfile: certdata.txt,v $ $Revision: 1.80 $ $Date: 2011/11/03 15:11:58 $

View File

@ -0,0 +1,67 @@
Metadata-Version: 2.1
Name: certifi
Version: 2024.7.4
Summary: Python package for providing Mozilla's CA Bundle.
Home-page: https://github.com/certifi/python-certifi
Author: Kenneth Reitz
Author-email: me@kennethreitz.com
License: MPL-2.0
Project-URL: Source, https://github.com/certifi/python-certifi
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)
Classifier: Natural Language :: English
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: >=3.6
License-File: LICENSE
Certifi: Python SSL Certificates
================================
Certifi provides Mozilla's carefully curated collection of Root Certificates for
validating the trustworthiness of SSL certificates while verifying the identity
of TLS hosts. It has been extracted from the `Requests`_ project.
Installation
------------
``certifi`` is available on PyPI. Simply install it with ``pip``::
$ pip install certifi
Usage
-----
To reference the installed certificate authority (CA) bundle, you can use the
built-in function::
>>> import certifi
>>> certifi.where()
'/usr/local/lib/python3.7/site-packages/certifi/cacert.pem'
Or from the command line::
$ python -m certifi
/usr/local/lib/python3.7/site-packages/certifi/cacert.pem
Enjoy!
.. _`Requests`: https://requests.readthedocs.io/en/master/
Addition/Removal of Certificates
--------------------------------
Certifi does not support any addition/removal or other modification of the
CA trust store content. This project is intended to provide a reliable and
highly portable root of trust to python deployments. Look to upstream projects
for methods to use alternate trust.

View File

@ -0,0 +1,14 @@
certifi-2024.7.4.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
certifi-2024.7.4.dist-info/LICENSE,sha256=6TcW2mucDVpKHfYP5pWzcPBpVgPSH2-D8FPkLPwQyvc,989
certifi-2024.7.4.dist-info/METADATA,sha256=L9_EuPoQQvHFzxu03_ctaEZxhEty7inz569jGWjlLGo,2221
certifi-2024.7.4.dist-info/RECORD,,
certifi-2024.7.4.dist-info/WHEEL,sha256=y4mX-SOX4fYIkonsAGA5N0Oy-8_gI4FXw5HNI1xqvWg,91
certifi-2024.7.4.dist-info/top_level.txt,sha256=KMu4vUCfsjLrkPbSNdgdekS-pVJzBAJFO__nI8NF6-U,8
certifi/__init__.py,sha256=LHXz7E80YJYBzCBv6ZyidQ5-ciYSkSebpY2E5OM0l7o,94
certifi/__main__.py,sha256=xBBoj905TUWBLRGANOcf7oi6e-3dMP4cEoG9OyMs11g,243
certifi/__pycache__/__init__.cpython-312.pyc,,
certifi/__pycache__/__main__.cpython-312.pyc,,
certifi/__pycache__/core.cpython-312.pyc,,
certifi/cacert.pem,sha256=SIupYGAr8HzGP073rsEIaS_sQYIPwzKKjj894DgUmu4,291528
certifi/core.py,sha256=qRDDFyXVJwTB_EmoGppaXU_R9qCZvhl-EzxPMuV3nTA,4426
certifi/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0

View File

@ -0,0 +1,5 @@
Wheel-Version: 1.0
Generator: setuptools (70.2.0)
Root-Is-Purelib: true
Tag: py3-none-any

View File

@ -0,0 +1,4 @@
from .core import contents, where
__all__ = ["contents", "where"]
__version__ = "2024.07.04"

View File

@ -0,0 +1,12 @@
import argparse
from certifi import contents, where
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--contents", action="store_true")
args = parser.parse_args()
if args.contents:
print(contents())
else:
print(where())

View File

@ -0,0 +1,114 @@
"""
certifi.py
~~~~~~~~~~
This module returns the installation location of cacert.pem or its contents.
"""
import sys
import atexit
def exit_cacert_ctx() -> None:
_CACERT_CTX.__exit__(None, None, None) # type: ignore[union-attr]
if sys.version_info >= (3, 11):
from importlib.resources import as_file, files
_CACERT_CTX = None
_CACERT_PATH = None
def where() -> str:
# This is slightly terrible, but we want to delay extracting the file
# in cases where we're inside of a zipimport situation until someone
# actually calls where(), but we don't want to re-extract the file
# on every call of where(), so we'll do it once then store it in a
# global variable.
global _CACERT_CTX
global _CACERT_PATH
if _CACERT_PATH is None:
# This is slightly janky, the importlib.resources API wants you to
# manage the cleanup of this file, so it doesn't actually return a
# path, it returns a context manager that will give you the path
# when you enter it and will do any cleanup when you leave it. In
# the common case of not needing a temporary file, it will just
# return the file system location and the __exit__() is a no-op.
#
# We also have to hold onto the actual context manager, because
# it will do the cleanup whenever it gets garbage collected, so
# we will also store that at the global level as well.
_CACERT_CTX = as_file(files("certifi").joinpath("cacert.pem"))
_CACERT_PATH = str(_CACERT_CTX.__enter__())
atexit.register(exit_cacert_ctx)
return _CACERT_PATH
def contents() -> str:
return files("certifi").joinpath("cacert.pem").read_text(encoding="ascii")
elif sys.version_info >= (3, 7):
from importlib.resources import path as get_path, read_text
_CACERT_CTX = None
_CACERT_PATH = None
def where() -> str:
# This is slightly terrible, but we want to delay extracting the
# file in cases where we're inside of a zipimport situation until
# someone actually calls where(), but we don't want to re-extract
# the file on every call of where(), so we'll do it once then store
# it in a global variable.
global _CACERT_CTX
global _CACERT_PATH
if _CACERT_PATH is None:
# This is slightly janky, the importlib.resources API wants you
# to manage the cleanup of this file, so it doesn't actually
# return a path, it returns a context manager that will give
# you the path when you enter it and will do any cleanup when
# you leave it. In the common case of not needing a temporary
# file, it will just return the file system location and the
# __exit__() is a no-op.
#
# We also have to hold onto the actual context manager, because
# it will do the cleanup whenever it gets garbage collected, so
# we will also store that at the global level as well.
_CACERT_CTX = get_path("certifi", "cacert.pem")
_CACERT_PATH = str(_CACERT_CTX.__enter__())
atexit.register(exit_cacert_ctx)
return _CACERT_PATH
def contents() -> str:
return read_text("certifi", "cacert.pem", encoding="ascii")
else:
import os
import types
from typing import Union
Package = Union[types.ModuleType, str]
Resource = Union[str, "os.PathLike"]
# This fallback will work for Python versions prior to 3.7 that lack the
# importlib.resources module but relies on the existing `where` function
# so won't address issues with environments like PyOxidizer that don't set
# __file__ on modules.
def read_text(
package: Package,
resource: Resource,
encoding: str = 'utf-8',
errors: str = 'strict'
) -> str:
with open(where(), encoding=encoding) as data:
return data.read()
# If we don't have importlib.resources, then we will just do the old logic
# of assuming we're on the filesystem and munge the path directly.
def where() -> str:
f = os.path.dirname(__file__)
return os.path.join(f, "cacert.pem")
def contents() -> str:
return read_text("certifi", "cacert.pem", encoding="ascii")

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2019 TAHRI Ahmed R.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,683 @@
Metadata-Version: 2.1
Name: charset-normalizer
Version: 3.3.2
Summary: The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet.
Home-page: https://github.com/Ousret/charset_normalizer
Author: Ahmed TAHRI
Author-email: ahmed.tahri@cloudnursery.dev
License: MIT
Project-URL: Bug Reports, https://github.com/Ousret/charset_normalizer/issues
Project-URL: Documentation, https://charset-normalizer.readthedocs.io/en/latest
Keywords: encoding,charset,charset-detector,detector,normalization,unicode,chardet,detect
Classifier: Development Status :: 5 - Production/Stable
Classifier: License :: OSI Approved :: MIT License
Classifier: Intended Audience :: Developers
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Text Processing :: Linguistic
Classifier: Topic :: Utilities
Classifier: Typing :: Typed
Requires-Python: >=3.7.0
Description-Content-Type: text/markdown
License-File: LICENSE
Provides-Extra: unicode_backport
<h1 align="center">Charset Detection, for Everyone 👋</h1>
<p align="center">
<sup>The Real First Universal Charset Detector</sup><br>
<a href="https://pypi.org/project/charset-normalizer">
<img src="https://img.shields.io/pypi/pyversions/charset_normalizer.svg?orange=blue" />
</a>
<a href="https://pepy.tech/project/charset-normalizer/">
<img alt="Download Count Total" src="https://static.pepy.tech/badge/charset-normalizer/month" />
</a>
<a href="https://bestpractices.coreinfrastructure.org/projects/7297">
<img src="https://bestpractices.coreinfrastructure.org/projects/7297/badge">
</a>
</p>
<p align="center">
<sup><i>Featured Packages</i></sup><br>
<a href="https://github.com/jawah/niquests">
<img alt="Static Badge" src="https://img.shields.io/badge/Niquests-HTTP_1.1%2C%202%2C_and_3_Client-cyan">
</a>
<a href="https://github.com/jawah/wassima">
<img alt="Static Badge" src="https://img.shields.io/badge/Wassima-Certifi_Killer-cyan">
</a>
</p>
<p align="center">
<sup><i>In other language (unofficial port - by the community)</i></sup><br>
<a href="https://github.com/nickspring/charset-normalizer-rs">
<img alt="Static Badge" src="https://img.shields.io/badge/Rust-red">
</a>
</p>
> A library that helps you read text from an unknown charset encoding.<br /> Motivated by `chardet`,
> I'm trying to resolve the issue by taking a new approach.
> All IANA character set names for which the Python core library provides codecs are supported.
<p align="center">
>>>>> <a href="https://charsetnormalizerweb.ousret.now.sh" target="_blank">👉 Try Me Online Now, Then Adopt Me 👈 </a> <<<<<
</p>
This project offers you an alternative to **Universal Charset Encoding Detector**, also known as **Chardet**.
| Feature | [Chardet](https://github.com/chardet/chardet) | Charset Normalizer | [cChardet](https://github.com/PyYoshi/cChardet) |
|--------------------------------------------------|:---------------------------------------------:|:--------------------------------------------------------------------------------------------------:|:-----------------------------------------------:|
| `Fast` | ❌ | ✅ | ✅ |
| `Universal**` | ❌ | ✅ | ❌ |
| `Reliable` **without** distinguishable standards | ❌ | ✅ | ✅ |
| `Reliable` **with** distinguishable standards | ✅ | ✅ | ✅ |
| `License` | LGPL-2.1<br>_restrictive_ | MIT | MPL-1.1<br>_restrictive_ |
| `Native Python` | ✅ | ✅ | ❌ |
| `Detect spoken language` | ❌ | ✅ | N/A |
| `UnicodeDecodeError Safety` | ❌ | ✅ | ❌ |
| `Whl Size (min)` | 193.6 kB | 42 kB | ~200 kB |
| `Supported Encoding` | 33 | 🎉 [99](https://charset-normalizer.readthedocs.io/en/latest/user/support.html#supported-encodings) | 40 |
<p align="center">
<img src="https://i.imgflip.com/373iay.gif" alt="Reading Normalized Text" width="226"/><img src="https://media.tenor.com/images/c0180f70732a18b4965448d33adba3d0/tenor.gif" alt="Cat Reading Text" width="200"/>
</p>
*\*\* : They are clearly using specific code for a specific encoding even if covering most of used one*<br>
Did you got there because of the logs? See [https://charset-normalizer.readthedocs.io/en/latest/user/miscellaneous.html](https://charset-normalizer.readthedocs.io/en/latest/user/miscellaneous.html)
## ⚡ Performance
This package offer better performance than its counterpart Chardet. Here are some numbers.
| Package | Accuracy | Mean per file (ms) | File per sec (est) |
|-----------------------------------------------|:--------:|:------------------:|:------------------:|
| [chardet](https://github.com/chardet/chardet) | 86 % | 200 ms | 5 file/sec |
| charset-normalizer | **98 %** | **10 ms** | 100 file/sec |
| Package | 99th percentile | 95th percentile | 50th percentile |
|-----------------------------------------------|:---------------:|:---------------:|:---------------:|
| [chardet](https://github.com/chardet/chardet) | 1200 ms | 287 ms | 23 ms |
| charset-normalizer | 100 ms | 50 ms | 5 ms |
Chardet's performance on larger file (1MB+) are very poor. Expect huge difference on large payload.
> Stats are generated using 400+ files using default parameters. More details on used files, see GHA workflows.
> And yes, these results might change at any time. The dataset can be updated to include more files.
> The actual delays heavily depends on your CPU capabilities. The factors should remain the same.
> Keep in mind that the stats are generous and that Chardet accuracy vs our is measured using Chardet initial capability
> (eg. Supported Encoding) Challenge-them if you want.
## ✨ Installation
Using pip:
```sh
pip install charset-normalizer -U
```
## 🚀 Basic Usage
### CLI
This package comes with a CLI.
```
usage: normalizer [-h] [-v] [-a] [-n] [-m] [-r] [-f] [-t THRESHOLD]
file [file ...]
The Real First Universal Charset Detector. Discover originating encoding used
on text file. Normalize text to unicode.
positional arguments:
files File(s) to be analysed
optional arguments:
-h, --help show this help message and exit
-v, --verbose Display complementary information about file if any.
Stdout will contain logs about the detection process.
-a, --with-alternative
Output complementary possibilities if any. Top-level
JSON WILL be a list.
-n, --normalize Permit to normalize input file. If not set, program
does not write anything.
-m, --minimal Only output the charset detected to STDOUT. Disabling
JSON output.
-r, --replace Replace file when trying to normalize it instead of
creating a new one.
-f, --force Replace file without asking if you are sure, use this
flag with caution.
-t THRESHOLD, --threshold THRESHOLD
Define a custom maximum amount of chaos allowed in
decoded content. 0. <= chaos <= 1.
--version Show version information and exit.
```
```bash
normalizer ./data/sample.1.fr.srt
```
or
```bash
python -m charset_normalizer ./data/sample.1.fr.srt
```
🎉 Since version 1.4.0 the CLI produce easily usable stdout result in JSON format.
```json
{
"path": "/home/default/projects/charset_normalizer/data/sample.1.fr.srt",
"encoding": "cp1252",
"encoding_aliases": [
"1252",
"windows_1252"
],
"alternative_encodings": [
"cp1254",
"cp1256",
"cp1258",
"iso8859_14",
"iso8859_15",
"iso8859_16",
"iso8859_3",
"iso8859_9",
"latin_1",
"mbcs"
],
"language": "French",
"alphabets": [
"Basic Latin",
"Latin-1 Supplement"
],
"has_sig_or_bom": false,
"chaos": 0.149,
"coherence": 97.152,
"unicode_path": null,
"is_preferred": true
}
```
### Python
*Just print out normalized text*
```python
from charset_normalizer import from_path
results = from_path('./my_subtitle.srt')
print(str(results.best()))
```
*Upgrade your code without effort*
```python
from charset_normalizer import detect
```
The above code will behave the same as **chardet**. We ensure that we offer the best (reasonable) BC result possible.
See the docs for advanced usage : [readthedocs.io](https://charset-normalizer.readthedocs.io/en/latest/)
## 😇 Why
When I started using Chardet, I noticed that it was not suited to my expectations, and I wanted to propose a
reliable alternative using a completely different method. Also! I never back down on a good challenge!
I **don't care** about the **originating charset** encoding, because **two different tables** can
produce **two identical rendered string.**
What I want is to get readable text, the best I can.
In a way, **I'm brute forcing text decoding.** How cool is that ? 😎
Don't confuse package **ftfy** with charset-normalizer or chardet. ftfy goal is to repair unicode string whereas charset-normalizer to convert raw file in unknown encoding to unicode.
## 🍰 How
- Discard all charset encoding table that could not fit the binary content.
- Measure noise, or the mess once opened (by chunks) with a corresponding charset encoding.
- Extract matches with the lowest mess detected.
- Additionally, we measure coherence / probe for a language.
**Wait a minute**, what is noise/mess and coherence according to **YOU ?**
*Noise :* I opened hundred of text files, **written by humans**, with the wrong encoding table. **I observed**, then
**I established** some ground rules about **what is obvious** when **it seems like** a mess.
I know that my interpretation of what is noise is probably incomplete, feel free to contribute in order to
improve or rewrite it.
*Coherence :* For each language there is on earth, we have computed ranked letter appearance occurrences (the best we can). So I thought
that intel is worth something here. So I use those records against decoded text to check if I can detect intelligent design.
## ⚡ Known limitations
- Language detection is unreliable when text contains two or more languages sharing identical letters. (eg. HTML (english tags) + Turkish content (Sharing Latin characters))
- Every charset detector heavily depends on sufficient content. In common cases, do not bother run detection on very tiny content.
## ⚠️ About Python EOLs
**If you are running:**
- Python >=2.7,<3.5: Unsupported
- Python 3.5: charset-normalizer < 2.1
- Python 3.6: charset-normalizer < 3.1
- Python 3.7: charset-normalizer < 4.0
Upgrade your Python interpreter as soon as possible.
## 👤 Contributing
Contributions, issues and feature requests are very much welcome.<br />
Feel free to check [issues page](https://github.com/ousret/charset_normalizer/issues) if you want to contribute.
## 📝 License
Copyright © [Ahmed TAHRI @Ousret](https://github.com/Ousret).<br />
This project is [MIT](https://github.com/Ousret/charset_normalizer/blob/master/LICENSE) licensed.
Characters frequencies used in this project © 2012 [Denny Vrandečić](http://simia.net/letters/)
## 💼 For Enterprise
Professional support for charset-normalizer is available as part of the [Tidelift
Subscription][1]. Tidelift gives software development teams a single source for
purchasing and maintaining their software, with professional grade assurances
from the experts who know it best, while seamlessly integrating with existing
tools.
[1]: https://tidelift.com/subscription/pkg/pypi-charset-normalizer?utm_source=pypi-charset-normalizer&utm_medium=readme
# Changelog
All notable changes to charset-normalizer will be documented in this file. This project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
## [3.3.2](https://github.com/Ousret/charset_normalizer/compare/3.3.1...3.3.2) (2023-10-31)
### Fixed
- Unintentional memory usage regression when using large payload that match several encoding (#376)
- Regression on some detection case showcased in the documentation (#371)
### Added
- Noise (md) probe that identify malformed arabic representation due to the presence of letters in isolated form (credit to my wife)
## [3.3.1](https://github.com/Ousret/charset_normalizer/compare/3.3.0...3.3.1) (2023-10-22)
### Changed
- Optional mypyc compilation upgraded to version 1.6.1 for Python >= 3.8
- Improved the general detection reliability based on reports from the community
## [3.3.0](https://github.com/Ousret/charset_normalizer/compare/3.2.0...3.3.0) (2023-09-30)
### Added
- Allow to execute the CLI (e.g. normalizer) through `python -m charset_normalizer.cli` or `python -m charset_normalizer`
- Support for 9 forgotten encoding that are supported by Python but unlisted in `encoding.aliases` as they have no alias (#323)
### Removed
- (internal) Redundant utils.is_ascii function and unused function is_private_use_only
- (internal) charset_normalizer.assets is moved inside charset_normalizer.constant
### Changed
- (internal) Unicode code blocks in constants are updated using the latest v15.0.0 definition to improve detection
- Optional mypyc compilation upgraded to version 1.5.1 for Python >= 3.8
### Fixed
- Unable to properly sort CharsetMatch when both chaos/noise and coherence were close due to an unreachable condition in \_\_lt\_\_ (#350)
## [3.2.0](https://github.com/Ousret/charset_normalizer/compare/3.1.0...3.2.0) (2023-06-07)
### Changed
- Typehint for function `from_path` no longer enforce `PathLike` as its first argument
- Minor improvement over the global detection reliability
### Added
- Introduce function `is_binary` that relies on main capabilities, and optimized to detect binaries
- Propagate `enable_fallback` argument throughout `from_bytes`, `from_path`, and `from_fp` that allow a deeper control over the detection (default True)
- Explicit support for Python 3.12
### Fixed
- Edge case detection failure where a file would contain 'very-long' camel cased word (Issue #289)
## [3.1.0](https://github.com/Ousret/charset_normalizer/compare/3.0.1...3.1.0) (2023-03-06)
### Added
- Argument `should_rename_legacy` for legacy function `detect` and disregard any new arguments without errors (PR #262)
### Removed
- Support for Python 3.6 (PR #260)
### Changed
- Optional speedup provided by mypy/c 1.0.1
## [3.0.1](https://github.com/Ousret/charset_normalizer/compare/3.0.0...3.0.1) (2022-11-18)
### Fixed
- Multi-bytes cutter/chunk generator did not always cut correctly (PR #233)
### Changed
- Speedup provided by mypy/c 0.990 on Python >= 3.7
## [3.0.0](https://github.com/Ousret/charset_normalizer/compare/2.1.1...3.0.0) (2022-10-20)
### Added
- Extend the capability of explain=True when cp_isolation contains at most two entries (min one), will log in details of the Mess-detector results
- Support for alternative language frequency set in charset_normalizer.assets.FREQUENCIES
- Add parameter `language_threshold` in `from_bytes`, `from_path` and `from_fp` to adjust the minimum expected coherence ratio
- `normalizer --version` now specify if current version provide extra speedup (meaning mypyc compilation whl)
### Changed
- Build with static metadata using 'build' frontend
- Make the language detection stricter
- Optional: Module `md.py` can be compiled using Mypyc to provide an extra speedup up to 4x faster than v2.1
### Fixed
- CLI with opt --normalize fail when using full path for files
- TooManyAccentuatedPlugin induce false positive on the mess detection when too few alpha character have been fed to it
- Sphinx warnings when generating the documentation
### Removed
- Coherence detector no longer return 'Simple English' instead return 'English'
- Coherence detector no longer return 'Classical Chinese' instead return 'Chinese'
- Breaking: Method `first()` and `best()` from CharsetMatch
- UTF-7 will no longer appear as "detected" without a recognized SIG/mark (is unreliable/conflict with ASCII)
- Breaking: Class aliases CharsetDetector, CharsetDoctor, CharsetNormalizerMatch and CharsetNormalizerMatches
- Breaking: Top-level function `normalize`
- Breaking: Properties `chaos_secondary_pass`, `coherence_non_latin` and `w_counter` from CharsetMatch
- Support for the backport `unicodedata2`
## [3.0.0rc1](https://github.com/Ousret/charset_normalizer/compare/3.0.0b2...3.0.0rc1) (2022-10-18)
### Added
- Extend the capability of explain=True when cp_isolation contains at most two entries (min one), will log in details of the Mess-detector results
- Support for alternative language frequency set in charset_normalizer.assets.FREQUENCIES
- Add parameter `language_threshold` in `from_bytes`, `from_path` and `from_fp` to adjust the minimum expected coherence ratio
### Changed
- Build with static metadata using 'build' frontend
- Make the language detection stricter
### Fixed
- CLI with opt --normalize fail when using full path for files
- TooManyAccentuatedPlugin induce false positive on the mess detection when too few alpha character have been fed to it
### Removed
- Coherence detector no longer return 'Simple English' instead return 'English'
- Coherence detector no longer return 'Classical Chinese' instead return 'Chinese'
## [3.0.0b2](https://github.com/Ousret/charset_normalizer/compare/3.0.0b1...3.0.0b2) (2022-08-21)
### Added
- `normalizer --version` now specify if current version provide extra speedup (meaning mypyc compilation whl)
### Removed
- Breaking: Method `first()` and `best()` from CharsetMatch
- UTF-7 will no longer appear as "detected" without a recognized SIG/mark (is unreliable/conflict with ASCII)
### Fixed
- Sphinx warnings when generating the documentation
## [3.0.0b1](https://github.com/Ousret/charset_normalizer/compare/2.1.0...3.0.0b1) (2022-08-15)
### Changed
- Optional: Module `md.py` can be compiled using Mypyc to provide an extra speedup up to 4x faster than v2.1
### Removed
- Breaking: Class aliases CharsetDetector, CharsetDoctor, CharsetNormalizerMatch and CharsetNormalizerMatches
- Breaking: Top-level function `normalize`
- Breaking: Properties `chaos_secondary_pass`, `coherence_non_latin` and `w_counter` from CharsetMatch
- Support for the backport `unicodedata2`
## [2.1.1](https://github.com/Ousret/charset_normalizer/compare/2.1.0...2.1.1) (2022-08-19)
### Deprecated
- Function `normalize` scheduled for removal in 3.0
### Changed
- Removed useless call to decode in fn is_unprintable (#206)
### Fixed
- Third-party library (i18n xgettext) crashing not recognizing utf_8 (PEP 263) with underscore from [@aleksandernovikov](https://github.com/aleksandernovikov) (#204)
## [2.1.0](https://github.com/Ousret/charset_normalizer/compare/2.0.12...2.1.0) (2022-06-19)
### Added
- Output the Unicode table version when running the CLI with `--version` (PR #194)
### Changed
- Re-use decoded buffer for single byte character sets from [@nijel](https://github.com/nijel) (PR #175)
- Fixing some performance bottlenecks from [@deedy5](https://github.com/deedy5) (PR #183)
### Fixed
- Workaround potential bug in cpython with Zero Width No-Break Space located in Arabic Presentation Forms-B, Unicode 1.1 not acknowledged as space (PR #175)
- CLI default threshold aligned with the API threshold from [@oleksandr-kuzmenko](https://github.com/oleksandr-kuzmenko) (PR #181)
### Removed
- Support for Python 3.5 (PR #192)
### Deprecated
- Use of backport unicodedata from `unicodedata2` as Python is quickly catching up, scheduled for removal in 3.0 (PR #194)
## [2.0.12](https://github.com/Ousret/charset_normalizer/compare/2.0.11...2.0.12) (2022-02-12)
### Fixed
- ASCII miss-detection on rare cases (PR #170)
## [2.0.11](https://github.com/Ousret/charset_normalizer/compare/2.0.10...2.0.11) (2022-01-30)
### Added
- Explicit support for Python 3.11 (PR #164)
### Changed
- The logging behavior have been completely reviewed, now using only TRACE and DEBUG levels (PR #163 #165)
## [2.0.10](https://github.com/Ousret/charset_normalizer/compare/2.0.9...2.0.10) (2022-01-04)
### Fixed
- Fallback match entries might lead to UnicodeDecodeError for large bytes sequence (PR #154)
### Changed
- Skipping the language-detection (CD) on ASCII (PR #155)
## [2.0.9](https://github.com/Ousret/charset_normalizer/compare/2.0.8...2.0.9) (2021-12-03)
### Changed
- Moderating the logging impact (since 2.0.8) for specific environments (PR #147)
### Fixed
- Wrong logging level applied when setting kwarg `explain` to True (PR #146)
## [2.0.8](https://github.com/Ousret/charset_normalizer/compare/2.0.7...2.0.8) (2021-11-24)
### Changed
- Improvement over Vietnamese detection (PR #126)
- MD improvement on trailing data and long foreign (non-pure latin) data (PR #124)
- Efficiency improvements in cd/alphabet_languages from [@adbar](https://github.com/adbar) (PR #122)
- call sum() without an intermediary list following PEP 289 recommendations from [@adbar](https://github.com/adbar) (PR #129)
- Code style as refactored by Sourcery-AI (PR #131)
- Minor adjustment on the MD around european words (PR #133)
- Remove and replace SRTs from assets / tests (PR #139)
- Initialize the library logger with a `NullHandler` by default from [@nmaynes](https://github.com/nmaynes) (PR #135)
- Setting kwarg `explain` to True will add provisionally (bounded to function lifespan) a specific stream handler (PR #135)
### Fixed
- Fix large (misleading) sequence giving UnicodeDecodeError (PR #137)
- Avoid using too insignificant chunk (PR #137)
### Added
- Add and expose function `set_logging_handler` to configure a specific StreamHandler from [@nmaynes](https://github.com/nmaynes) (PR #135)
- Add `CHANGELOG.md` entries, format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) (PR #141)
## [2.0.7](https://github.com/Ousret/charset_normalizer/compare/2.0.6...2.0.7) (2021-10-11)
### Added
- Add support for Kazakh (Cyrillic) language detection (PR #109)
### Changed
- Further, improve inferring the language from a given single-byte code page (PR #112)
- Vainly trying to leverage PEP263 when PEP3120 is not supported (PR #116)
- Refactoring for potential performance improvements in loops from [@adbar](https://github.com/adbar) (PR #113)
- Various detection improvement (MD+CD) (PR #117)
### Removed
- Remove redundant logging entry about detected language(s) (PR #115)
### Fixed
- Fix a minor inconsistency between Python 3.5 and other versions regarding language detection (PR #117 #102)
## [2.0.6](https://github.com/Ousret/charset_normalizer/compare/2.0.5...2.0.6) (2021-09-18)
### Fixed
- Unforeseen regression with the loss of the backward-compatibility with some older minor of Python 3.5.x (PR #100)
- Fix CLI crash when using --minimal output in certain cases (PR #103)
### Changed
- Minor improvement to the detection efficiency (less than 1%) (PR #106 #101)
## [2.0.5](https://github.com/Ousret/charset_normalizer/compare/2.0.4...2.0.5) (2021-09-14)
### Changed
- The project now comply with: flake8, mypy, isort and black to ensure a better overall quality (PR #81)
- The BC-support with v1.x was improved, the old staticmethods are restored (PR #82)
- The Unicode detection is slightly improved (PR #93)
- Add syntax sugar \_\_bool\_\_ for results CharsetMatches list-container (PR #91)
### Removed
- The project no longer raise warning on tiny content given for detection, will be simply logged as warning instead (PR #92)
### Fixed
- In some rare case, the chunks extractor could cut in the middle of a multi-byte character and could mislead the mess detection (PR #95)
- Some rare 'space' characters could trip up the UnprintablePlugin/Mess detection (PR #96)
- The MANIFEST.in was not exhaustive (PR #78)
## [2.0.4](https://github.com/Ousret/charset_normalizer/compare/2.0.3...2.0.4) (2021-07-30)
### Fixed
- The CLI no longer raise an unexpected exception when no encoding has been found (PR #70)
- Fix accessing the 'alphabets' property when the payload contains surrogate characters (PR #68)
- The logger could mislead (explain=True) on detected languages and the impact of one MBCS match (PR #72)
- Submatch factoring could be wrong in rare edge cases (PR #72)
- Multiple files given to the CLI were ignored when publishing results to STDOUT. (After the first path) (PR #72)
- Fix line endings from CRLF to LF for certain project files (PR #67)
### Changed
- Adjust the MD to lower the sensitivity, thus improving the global detection reliability (PR #69 #76)
- Allow fallback on specified encoding if any (PR #71)
## [2.0.3](https://github.com/Ousret/charset_normalizer/compare/2.0.2...2.0.3) (2021-07-16)
### Changed
- Part of the detection mechanism has been improved to be less sensitive, resulting in more accurate detection results. Especially ASCII. (PR #63)
- According to the community wishes, the detection will fall back on ASCII or UTF-8 in a last-resort case. (PR #64)
## [2.0.2](https://github.com/Ousret/charset_normalizer/compare/2.0.1...2.0.2) (2021-07-15)
### Fixed
- Empty/Too small JSON payload miss-detection fixed. Report from [@tseaver](https://github.com/tseaver) (PR #59)
### Changed
- Don't inject unicodedata2 into sys.modules from [@akx](https://github.com/akx) (PR #57)
## [2.0.1](https://github.com/Ousret/charset_normalizer/compare/2.0.0...2.0.1) (2021-07-13)
### Fixed
- Make it work where there isn't a filesystem available, dropping assets frequencies.json. Report from [@sethmlarson](https://github.com/sethmlarson). (PR #55)
- Using explain=False permanently disable the verbose output in the current runtime (PR #47)
- One log entry (language target preemptive) was not show in logs when using explain=True (PR #47)
- Fix undesired exception (ValueError) on getitem of instance CharsetMatches (PR #52)
### Changed
- Public function normalize default args values were not aligned with from_bytes (PR #53)
### Added
- You may now use charset aliases in cp_isolation and cp_exclusion arguments (PR #47)
## [2.0.0](https://github.com/Ousret/charset_normalizer/compare/1.4.1...2.0.0) (2021-07-02)
### Changed
- 4x to 5 times faster than the previous 1.4.0 release. At least 2x faster than Chardet.
- Accent has been made on UTF-8 detection, should perform rather instantaneous.
- The backward compatibility with Chardet has been greatly improved. The legacy detect function returns an identical charset name whenever possible.
- The detection mechanism has been slightly improved, now Turkish content is detected correctly (most of the time)
- The program has been rewritten to ease the readability and maintainability. (+Using static typing)+
- utf_7 detection has been reinstated.
### Removed
- This package no longer require anything when used with Python 3.5 (Dropped cached_property)
- Removed support for these languages: Catalan, Esperanto, Kazakh, Baque, Volapük, Azeri, Galician, Nynorsk, Macedonian, and Serbocroatian.
- The exception hook on UnicodeDecodeError has been removed.
### Deprecated
- Methods coherence_non_latin, w_counter, chaos_secondary_pass of the class CharsetMatch are now deprecated and scheduled for removal in v3.0
### Fixed
- The CLI output used the relative path of the file(s). Should be absolute.
## [1.4.1](https://github.com/Ousret/charset_normalizer/compare/1.4.0...1.4.1) (2021-05-28)
### Fixed
- Logger configuration/usage no longer conflict with others (PR #44)
## [1.4.0](https://github.com/Ousret/charset_normalizer/compare/1.3.9...1.4.0) (2021-05-21)
### Removed
- Using standard logging instead of using the package loguru.
- Dropping nose test framework in favor of the maintained pytest.
- Choose to not use dragonmapper package to help with gibberish Chinese/CJK text.
- Require cached_property only for Python 3.5 due to constraint. Dropping for every other interpreter version.
- Stop support for UTF-7 that does not contain a SIG.
- Dropping PrettyTable, replaced with pure JSON output in CLI.
### Fixed
- BOM marker in a CharsetNormalizerMatch instance could be False in rare cases even if obviously present. Due to the sub-match factoring process.
- Not searching properly for the BOM when trying utf32/16 parent codec.
### Changed
- Improving the package final size by compressing frequencies.json.
- Huge improvement over the larges payload.
### Added
- CLI now produces JSON consumable output.
- Return ASCII if given sequences fit. Given reasonable confidence.
## [1.3.9](https://github.com/Ousret/charset_normalizer/compare/1.3.8...1.3.9) (2021-05-13)
### Fixed
- In some very rare cases, you may end up getting encode/decode errors due to a bad bytes payload (PR #40)
## [1.3.8](https://github.com/Ousret/charset_normalizer/compare/1.3.7...1.3.8) (2021-05-12)
### Fixed
- Empty given payload for detection may cause an exception if trying to access the `alphabets` property. (PR #39)
## [1.3.7](https://github.com/Ousret/charset_normalizer/compare/1.3.6...1.3.7) (2021-05-12)
### Fixed
- The legacy detect function should return UTF-8-SIG if sig is present in the payload. (PR #38)
## [1.3.6](https://github.com/Ousret/charset_normalizer/compare/1.3.5...1.3.6) (2021-02-09)
### Changed
- Amend the previous release to allow prettytable 2.0 (PR #35)
## [1.3.5](https://github.com/Ousret/charset_normalizer/compare/1.3.4...1.3.5) (2021-02-08)
### Fixed
- Fix error while using the package with a python pre-release interpreter (PR #33)
### Changed
- Dependencies refactoring, constraints revised.
### Added
- Add python 3.9 and 3.10 to the supported interpreters
MIT License
Copyright (c) 2019 TAHRI Ahmed R.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,35 @@
../../bin/normalizer,sha256=O1tLXvRzeuQHDVSDjsuiUko8eeXdZtA_eGTgJcdT5qs,233
charset_normalizer-3.3.2.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
charset_normalizer-3.3.2.dist-info/LICENSE,sha256=6zGgxaT7Cbik4yBV0lweX5w1iidS_vPNcgIT0cz-4kE,1070
charset_normalizer-3.3.2.dist-info/METADATA,sha256=cfLhl5A6SI-F0oclm8w8ux9wshL1nipdeCdVnYb4AaA,33550
charset_normalizer-3.3.2.dist-info/RECORD,,
charset_normalizer-3.3.2.dist-info/WHEEL,sha256=4ZiCdXIWMxJyEClivrQv1QAHZpQh8kVYU92_ZAVwaok,152
charset_normalizer-3.3.2.dist-info/entry_points.txt,sha256=ADSTKrkXZ3hhdOVFi6DcUEHQRS0xfxDIE_pEz4wLIXA,65
charset_normalizer-3.3.2.dist-info/top_level.txt,sha256=7ASyzePr8_xuZWJsnqJjIBtyV8vhEo0wBCv1MPRRi3Q,19
charset_normalizer/__init__.py,sha256=UzI3xC8PhmcLRMzSgPb6minTmRq0kWznnCBJ8ZCc2XI,1577
charset_normalizer/__main__.py,sha256=JxY8bleaENOFlLRb9HfoeZCzAMnn2A1oGR5Xm2eyqg0,73
charset_normalizer/__pycache__/__init__.cpython-312.pyc,,
charset_normalizer/__pycache__/__main__.cpython-312.pyc,,
charset_normalizer/__pycache__/api.cpython-312.pyc,,
charset_normalizer/__pycache__/cd.cpython-312.pyc,,
charset_normalizer/__pycache__/constant.cpython-312.pyc,,
charset_normalizer/__pycache__/legacy.cpython-312.pyc,,
charset_normalizer/__pycache__/md.cpython-312.pyc,,
charset_normalizer/__pycache__/models.cpython-312.pyc,,
charset_normalizer/__pycache__/utils.cpython-312.pyc,,
charset_normalizer/__pycache__/version.cpython-312.pyc,,
charset_normalizer/api.py,sha256=WOlWjy6wT8SeMYFpaGbXZFN1TMXa-s8vZYfkL4G29iQ,21097
charset_normalizer/cd.py,sha256=xwZliZcTQFA3jU0c00PRiu9MNxXTFxQkFLWmMW24ZzI,12560
charset_normalizer/cli/__init__.py,sha256=D5ERp8P62llm2FuoMzydZ7d9rs8cvvLXqE-1_6oViPc,100
charset_normalizer/cli/__main__.py,sha256=2F-xURZJzo063Ye-2RLJ2wcmURpbKeAzKwpiws65dAs,9744
charset_normalizer/cli/__pycache__/__init__.cpython-312.pyc,,
charset_normalizer/cli/__pycache__/__main__.cpython-312.pyc,,
charset_normalizer/constant.py,sha256=p0IsOVcEbPWYPOdWhnhRbjK1YVBy6fs05C5vKC-zoxU,40481
charset_normalizer/legacy.py,sha256=T-QuVMsMeDiQEk8WSszMrzVJg_14AMeSkmHdRYhdl1k,2071
charset_normalizer/md.cpython-312-x86_64-linux-gnu.so,sha256=W654QTU3QZI6eWJ0fanScAr0_O6sL0I61fyRSdC-39Y,16064
charset_normalizer/md.py,sha256=NkSuVLK13_a8c7BxZ4cGIQ5vOtGIWOdh22WZEvjp-7U,19624
charset_normalizer/md__mypyc.cpython-312-x86_64-linux-gnu.so,sha256=IlObIV4dmRhFV8V7H-zK4rTxPzTSi9JmrWZD26JQfxI,272640
charset_normalizer/models.py,sha256=I5i0s4aKCCgLPY2tUY3pwkgFA-BUbbNxQ7hVkVTt62s,11624
charset_normalizer/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
charset_normalizer/utils.py,sha256=teiosMqzKjXyAHXnGdjSBOgnBZwx-SkBbCLrx0UXy8M,11894
charset_normalizer/version.py,sha256=iHKUfHD3kDRSyrh_BN2ojh43TA5-UZQjvbVIEFfpHDs,79

View File

@ -0,0 +1,6 @@
Wheel-Version: 1.0
Generator: bdist_wheel (0.41.2)
Root-Is-Purelib: false
Tag: cp312-cp312-manylinux_2_17_x86_64
Tag: cp312-cp312-manylinux2014_x86_64

View File

@ -0,0 +1,2 @@
[console_scripts]
normalizer = charset_normalizer.cli:cli_detect

View File

@ -0,0 +1,46 @@
# -*- coding: utf-8 -*-
"""
Charset-Normalizer
~~~~~~~~~~~~~~
The Real First Universal Charset Detector.
A library that helps you read text from an unknown charset encoding.
Motivated by chardet, This package is trying to resolve the issue by taking a new approach.
All IANA character set names for which the Python core library provides codecs are supported.
Basic usage:
>>> from charset_normalizer import from_bytes
>>> results = from_bytes('Bсеки човек има право на образование. Oбразованието!'.encode('utf_8'))
>>> best_guess = results.best()
>>> str(best_guess)
'Bсеки човек има право на образование. Oбразованието!'
Others methods and usages are available - see the full documentation
at <https://github.com/Ousret/charset_normalizer>.
:copyright: (c) 2021 by Ahmed TAHRI
:license: MIT, see LICENSE for more details.
"""
import logging
from .api import from_bytes, from_fp, from_path, is_binary
from .legacy import detect
from .models import CharsetMatch, CharsetMatches
from .utils import set_logging_handler
from .version import VERSION, __version__
__all__ = (
"from_fp",
"from_path",
"from_bytes",
"is_binary",
"detect",
"CharsetMatch",
"CharsetMatches",
"__version__",
"VERSION",
"set_logging_handler",
)
# Attach a NullHandler to the top level logger by default
# https://docs.python.org/3.3/howto/logging.html#configuring-logging-for-a-library
logging.getLogger("charset_normalizer").addHandler(logging.NullHandler())

View File

@ -0,0 +1,4 @@
from .cli import cli_detect
if __name__ == "__main__":
cli_detect()

View File

@ -0,0 +1,626 @@
import logging
from os import PathLike
from typing import BinaryIO, List, Optional, Set, Union
from .cd import (
coherence_ratio,
encoding_languages,
mb_encoding_languages,
merge_coherence_ratios,
)
from .constant import IANA_SUPPORTED, TOO_BIG_SEQUENCE, TOO_SMALL_SEQUENCE, TRACE
from .md import mess_ratio
from .models import CharsetMatch, CharsetMatches
from .utils import (
any_specified_encoding,
cut_sequence_chunks,
iana_name,
identify_sig_or_bom,
is_cp_similar,
is_multi_byte_encoding,
should_strip_sig_or_bom,
)
# Will most likely be controversial
# logging.addLevelName(TRACE, "TRACE")
logger = logging.getLogger("charset_normalizer")
explain_handler = logging.StreamHandler()
explain_handler.setFormatter(
logging.Formatter("%(asctime)s | %(levelname)s | %(message)s")
)
def from_bytes(
sequences: Union[bytes, bytearray],
steps: int = 5,
chunk_size: int = 512,
threshold: float = 0.2,
cp_isolation: Optional[List[str]] = None,
cp_exclusion: Optional[List[str]] = None,
preemptive_behaviour: bool = True,
explain: bool = False,
language_threshold: float = 0.1,
enable_fallback: bool = True,
) -> CharsetMatches:
"""
Given a raw bytes sequence, return the best possibles charset usable to render str objects.
If there is no results, it is a strong indicator that the source is binary/not text.
By default, the process will extract 5 blocks of 512o each to assess the mess and coherence of a given sequence.
And will give up a particular code page after 20% of measured mess. Those criteria are customizable at will.
The preemptive behavior DOES NOT replace the traditional detection workflow, it prioritize a particular code page
but never take it for granted. Can improve the performance.
You may want to focus your attention to some code page or/and not others, use cp_isolation and cp_exclusion for that
purpose.
This function will strip the SIG in the payload/sequence every time except on UTF-16, UTF-32.
By default the library does not setup any handler other than the NullHandler, if you choose to set the 'explain'
toggle to True it will alter the logger configuration to add a StreamHandler that is suitable for debugging.
Custom logging format and handler can be set manually.
"""
if not isinstance(sequences, (bytearray, bytes)):
raise TypeError(
"Expected object of type bytes or bytearray, got: {0}".format(
type(sequences)
)
)
if explain:
previous_logger_level: int = logger.level
logger.addHandler(explain_handler)
logger.setLevel(TRACE)
length: int = len(sequences)
if length == 0:
logger.debug("Encoding detection on empty bytes, assuming utf_8 intention.")
if explain:
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level or logging.WARNING)
return CharsetMatches([CharsetMatch(sequences, "utf_8", 0.0, False, [], "")])
if cp_isolation is not None:
logger.log(
TRACE,
"cp_isolation is set. use this flag for debugging purpose. "
"limited list of encoding allowed : %s.",
", ".join(cp_isolation),
)
cp_isolation = [iana_name(cp, False) for cp in cp_isolation]
else:
cp_isolation = []
if cp_exclusion is not None:
logger.log(
TRACE,
"cp_exclusion is set. use this flag for debugging purpose. "
"limited list of encoding excluded : %s.",
", ".join(cp_exclusion),
)
cp_exclusion = [iana_name(cp, False) for cp in cp_exclusion]
else:
cp_exclusion = []
if length <= (chunk_size * steps):
logger.log(
TRACE,
"override steps (%i) and chunk_size (%i) as content does not fit (%i byte(s) given) parameters.",
steps,
chunk_size,
length,
)
steps = 1
chunk_size = length
if steps > 1 and length / steps < chunk_size:
chunk_size = int(length / steps)
is_too_small_sequence: bool = len(sequences) < TOO_SMALL_SEQUENCE
is_too_large_sequence: bool = len(sequences) >= TOO_BIG_SEQUENCE
if is_too_small_sequence:
logger.log(
TRACE,
"Trying to detect encoding from a tiny portion of ({}) byte(s).".format(
length
),
)
elif is_too_large_sequence:
logger.log(
TRACE,
"Using lazy str decoding because the payload is quite large, ({}) byte(s).".format(
length
),
)
prioritized_encodings: List[str] = []
specified_encoding: Optional[str] = (
any_specified_encoding(sequences) if preemptive_behaviour else None
)
if specified_encoding is not None:
prioritized_encodings.append(specified_encoding)
logger.log(
TRACE,
"Detected declarative mark in sequence. Priority +1 given for %s.",
specified_encoding,
)
tested: Set[str] = set()
tested_but_hard_failure: List[str] = []
tested_but_soft_failure: List[str] = []
fallback_ascii: Optional[CharsetMatch] = None
fallback_u8: Optional[CharsetMatch] = None
fallback_specified: Optional[CharsetMatch] = None
results: CharsetMatches = CharsetMatches()
sig_encoding, sig_payload = identify_sig_or_bom(sequences)
if sig_encoding is not None:
prioritized_encodings.append(sig_encoding)
logger.log(
TRACE,
"Detected a SIG or BOM mark on first %i byte(s). Priority +1 given for %s.",
len(sig_payload),
sig_encoding,
)
prioritized_encodings.append("ascii")
if "utf_8" not in prioritized_encodings:
prioritized_encodings.append("utf_8")
for encoding_iana in prioritized_encodings + IANA_SUPPORTED:
if cp_isolation and encoding_iana not in cp_isolation:
continue
if cp_exclusion and encoding_iana in cp_exclusion:
continue
if encoding_iana in tested:
continue
tested.add(encoding_iana)
decoded_payload: Optional[str] = None
bom_or_sig_available: bool = sig_encoding == encoding_iana
strip_sig_or_bom: bool = bom_or_sig_available and should_strip_sig_or_bom(
encoding_iana
)
if encoding_iana in {"utf_16", "utf_32"} and not bom_or_sig_available:
logger.log(
TRACE,
"Encoding %s won't be tested as-is because it require a BOM. Will try some sub-encoder LE/BE.",
encoding_iana,
)
continue
if encoding_iana in {"utf_7"} and not bom_or_sig_available:
logger.log(
TRACE,
"Encoding %s won't be tested as-is because detection is unreliable without BOM/SIG.",
encoding_iana,
)
continue
try:
is_multi_byte_decoder: bool = is_multi_byte_encoding(encoding_iana)
except (ModuleNotFoundError, ImportError):
logger.log(
TRACE,
"Encoding %s does not provide an IncrementalDecoder",
encoding_iana,
)
continue
try:
if is_too_large_sequence and is_multi_byte_decoder is False:
str(
sequences[: int(50e4)]
if strip_sig_or_bom is False
else sequences[len(sig_payload) : int(50e4)],
encoding=encoding_iana,
)
else:
decoded_payload = str(
sequences
if strip_sig_or_bom is False
else sequences[len(sig_payload) :],
encoding=encoding_iana,
)
except (UnicodeDecodeError, LookupError) as e:
if not isinstance(e, LookupError):
logger.log(
TRACE,
"Code page %s does not fit given bytes sequence at ALL. %s",
encoding_iana,
str(e),
)
tested_but_hard_failure.append(encoding_iana)
continue
similar_soft_failure_test: bool = False
for encoding_soft_failed in tested_but_soft_failure:
if is_cp_similar(encoding_iana, encoding_soft_failed):
similar_soft_failure_test = True
break
if similar_soft_failure_test:
logger.log(
TRACE,
"%s is deemed too similar to code page %s and was consider unsuited already. Continuing!",
encoding_iana,
encoding_soft_failed,
)
continue
r_ = range(
0 if not bom_or_sig_available else len(sig_payload),
length,
int(length / steps),
)
multi_byte_bonus: bool = (
is_multi_byte_decoder
and decoded_payload is not None
and len(decoded_payload) < length
)
if multi_byte_bonus:
logger.log(
TRACE,
"Code page %s is a multi byte encoding table and it appear that at least one character "
"was encoded using n-bytes.",
encoding_iana,
)
max_chunk_gave_up: int = int(len(r_) / 4)
max_chunk_gave_up = max(max_chunk_gave_up, 2)
early_stop_count: int = 0
lazy_str_hard_failure = False
md_chunks: List[str] = []
md_ratios = []
try:
for chunk in cut_sequence_chunks(
sequences,
encoding_iana,
r_,
chunk_size,
bom_or_sig_available,
strip_sig_or_bom,
sig_payload,
is_multi_byte_decoder,
decoded_payload,
):
md_chunks.append(chunk)
md_ratios.append(
mess_ratio(
chunk,
threshold,
explain is True and 1 <= len(cp_isolation) <= 2,
)
)
if md_ratios[-1] >= threshold:
early_stop_count += 1
if (early_stop_count >= max_chunk_gave_up) or (
bom_or_sig_available and strip_sig_or_bom is False
):
break
except (
UnicodeDecodeError
) as e: # Lazy str loading may have missed something there
logger.log(
TRACE,
"LazyStr Loading: After MD chunk decode, code page %s does not fit given bytes sequence at ALL. %s",
encoding_iana,
str(e),
)
early_stop_count = max_chunk_gave_up
lazy_str_hard_failure = True
# We might want to check the sequence again with the whole content
# Only if initial MD tests passes
if (
not lazy_str_hard_failure
and is_too_large_sequence
and not is_multi_byte_decoder
):
try:
sequences[int(50e3) :].decode(encoding_iana, errors="strict")
except UnicodeDecodeError as e:
logger.log(
TRACE,
"LazyStr Loading: After final lookup, code page %s does not fit given bytes sequence at ALL. %s",
encoding_iana,
str(e),
)
tested_but_hard_failure.append(encoding_iana)
continue
mean_mess_ratio: float = sum(md_ratios) / len(md_ratios) if md_ratios else 0.0
if mean_mess_ratio >= threshold or early_stop_count >= max_chunk_gave_up:
tested_but_soft_failure.append(encoding_iana)
logger.log(
TRACE,
"%s was excluded because of initial chaos probing. Gave up %i time(s). "
"Computed mean chaos is %f %%.",
encoding_iana,
early_stop_count,
round(mean_mess_ratio * 100, ndigits=3),
)
# Preparing those fallbacks in case we got nothing.
if (
enable_fallback
and encoding_iana in ["ascii", "utf_8", specified_encoding]
and not lazy_str_hard_failure
):
fallback_entry = CharsetMatch(
sequences, encoding_iana, threshold, False, [], decoded_payload
)
if encoding_iana == specified_encoding:
fallback_specified = fallback_entry
elif encoding_iana == "ascii":
fallback_ascii = fallback_entry
else:
fallback_u8 = fallback_entry
continue
logger.log(
TRACE,
"%s passed initial chaos probing. Mean measured chaos is %f %%",
encoding_iana,
round(mean_mess_ratio * 100, ndigits=3),
)
if not is_multi_byte_decoder:
target_languages: List[str] = encoding_languages(encoding_iana)
else:
target_languages = mb_encoding_languages(encoding_iana)
if target_languages:
logger.log(
TRACE,
"{} should target any language(s) of {}".format(
encoding_iana, str(target_languages)
),
)
cd_ratios = []
# We shall skip the CD when its about ASCII
# Most of the time its not relevant to run "language-detection" on it.
if encoding_iana != "ascii":
for chunk in md_chunks:
chunk_languages = coherence_ratio(
chunk,
language_threshold,
",".join(target_languages) if target_languages else None,
)
cd_ratios.append(chunk_languages)
cd_ratios_merged = merge_coherence_ratios(cd_ratios)
if cd_ratios_merged:
logger.log(
TRACE,
"We detected language {} using {}".format(
cd_ratios_merged, encoding_iana
),
)
results.append(
CharsetMatch(
sequences,
encoding_iana,
mean_mess_ratio,
bom_or_sig_available,
cd_ratios_merged,
decoded_payload,
)
)
if (
encoding_iana in [specified_encoding, "ascii", "utf_8"]
and mean_mess_ratio < 0.1
):
logger.debug(
"Encoding detection: %s is most likely the one.", encoding_iana
)
if explain:
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level)
return CharsetMatches([results[encoding_iana]])
if encoding_iana == sig_encoding:
logger.debug(
"Encoding detection: %s is most likely the one as we detected a BOM or SIG within "
"the beginning of the sequence.",
encoding_iana,
)
if explain:
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level)
return CharsetMatches([results[encoding_iana]])
if len(results) == 0:
if fallback_u8 or fallback_ascii or fallback_specified:
logger.log(
TRACE,
"Nothing got out of the detection process. Using ASCII/UTF-8/Specified fallback.",
)
if fallback_specified:
logger.debug(
"Encoding detection: %s will be used as a fallback match",
fallback_specified.encoding,
)
results.append(fallback_specified)
elif (
(fallback_u8 and fallback_ascii is None)
or (
fallback_u8
and fallback_ascii
and fallback_u8.fingerprint != fallback_ascii.fingerprint
)
or (fallback_u8 is not None)
):
logger.debug("Encoding detection: utf_8 will be used as a fallback match")
results.append(fallback_u8)
elif fallback_ascii:
logger.debug("Encoding detection: ascii will be used as a fallback match")
results.append(fallback_ascii)
if results:
logger.debug(
"Encoding detection: Found %s as plausible (best-candidate) for content. With %i alternatives.",
results.best().encoding, # type: ignore
len(results) - 1,
)
else:
logger.debug("Encoding detection: Unable to determine any suitable charset.")
if explain:
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level)
return results
def from_fp(
fp: BinaryIO,
steps: int = 5,
chunk_size: int = 512,
threshold: float = 0.20,
cp_isolation: Optional[List[str]] = None,
cp_exclusion: Optional[List[str]] = None,
preemptive_behaviour: bool = True,
explain: bool = False,
language_threshold: float = 0.1,
enable_fallback: bool = True,
) -> CharsetMatches:
"""
Same thing than the function from_bytes but using a file pointer that is already ready.
Will not close the file pointer.
"""
return from_bytes(
fp.read(),
steps,
chunk_size,
threshold,
cp_isolation,
cp_exclusion,
preemptive_behaviour,
explain,
language_threshold,
enable_fallback,
)
def from_path(
path: Union[str, bytes, PathLike], # type: ignore[type-arg]
steps: int = 5,
chunk_size: int = 512,
threshold: float = 0.20,
cp_isolation: Optional[List[str]] = None,
cp_exclusion: Optional[List[str]] = None,
preemptive_behaviour: bool = True,
explain: bool = False,
language_threshold: float = 0.1,
enable_fallback: bool = True,
) -> CharsetMatches:
"""
Same thing than the function from_bytes but with one extra step. Opening and reading given file path in binary mode.
Can raise IOError.
"""
with open(path, "rb") as fp:
return from_fp(
fp,
steps,
chunk_size,
threshold,
cp_isolation,
cp_exclusion,
preemptive_behaviour,
explain,
language_threshold,
enable_fallback,
)
def is_binary(
fp_or_path_or_payload: Union[PathLike, str, BinaryIO, bytes], # type: ignore[type-arg]
steps: int = 5,
chunk_size: int = 512,
threshold: float = 0.20,
cp_isolation: Optional[List[str]] = None,
cp_exclusion: Optional[List[str]] = None,
preemptive_behaviour: bool = True,
explain: bool = False,
language_threshold: float = 0.1,
enable_fallback: bool = False,
) -> bool:
"""
Detect if the given input (file, bytes, or path) points to a binary file. aka. not a string.
Based on the same main heuristic algorithms and default kwargs at the sole exception that fallbacks match
are disabled to be stricter around ASCII-compatible but unlikely to be a string.
"""
if isinstance(fp_or_path_or_payload, (str, PathLike)):
guesses = from_path(
fp_or_path_or_payload,
steps=steps,
chunk_size=chunk_size,
threshold=threshold,
cp_isolation=cp_isolation,
cp_exclusion=cp_exclusion,
preemptive_behaviour=preemptive_behaviour,
explain=explain,
language_threshold=language_threshold,
enable_fallback=enable_fallback,
)
elif isinstance(
fp_or_path_or_payload,
(
bytes,
bytearray,
),
):
guesses = from_bytes(
fp_or_path_or_payload,
steps=steps,
chunk_size=chunk_size,
threshold=threshold,
cp_isolation=cp_isolation,
cp_exclusion=cp_exclusion,
preemptive_behaviour=preemptive_behaviour,
explain=explain,
language_threshold=language_threshold,
enable_fallback=enable_fallback,
)
else:
guesses = from_fp(
fp_or_path_or_payload,
steps=steps,
chunk_size=chunk_size,
threshold=threshold,
cp_isolation=cp_isolation,
cp_exclusion=cp_exclusion,
preemptive_behaviour=preemptive_behaviour,
explain=explain,
language_threshold=language_threshold,
enable_fallback=enable_fallback,
)
return not guesses

View File

@ -0,0 +1,395 @@
import importlib
from codecs import IncrementalDecoder
from collections import Counter
from functools import lru_cache
from typing import Counter as TypeCounter, Dict, List, Optional, Tuple
from .constant import (
FREQUENCIES,
KO_NAMES,
LANGUAGE_SUPPORTED_COUNT,
TOO_SMALL_SEQUENCE,
ZH_NAMES,
)
from .md import is_suspiciously_successive_range
from .models import CoherenceMatches
from .utils import (
is_accentuated,
is_latin,
is_multi_byte_encoding,
is_unicode_range_secondary,
unicode_range,
)
def encoding_unicode_range(iana_name: str) -> List[str]:
"""
Return associated unicode ranges in a single byte code page.
"""
if is_multi_byte_encoding(iana_name):
raise IOError("Function not supported on multi-byte code page")
decoder = importlib.import_module(
"encodings.{}".format(iana_name)
).IncrementalDecoder
p: IncrementalDecoder = decoder(errors="ignore")
seen_ranges: Dict[str, int] = {}
character_count: int = 0
for i in range(0x40, 0xFF):
chunk: str = p.decode(bytes([i]))
if chunk:
character_range: Optional[str] = unicode_range(chunk)
if character_range is None:
continue
if is_unicode_range_secondary(character_range) is False:
if character_range not in seen_ranges:
seen_ranges[character_range] = 0
seen_ranges[character_range] += 1
character_count += 1
return sorted(
[
character_range
for character_range in seen_ranges
if seen_ranges[character_range] / character_count >= 0.15
]
)
def unicode_range_languages(primary_range: str) -> List[str]:
"""
Return inferred languages used with a unicode range.
"""
languages: List[str] = []
for language, characters in FREQUENCIES.items():
for character in characters:
if unicode_range(character) == primary_range:
languages.append(language)
break
return languages
@lru_cache()
def encoding_languages(iana_name: str) -> List[str]:
"""
Single-byte encoding language association. Some code page are heavily linked to particular language(s).
This function does the correspondence.
"""
unicode_ranges: List[str] = encoding_unicode_range(iana_name)
primary_range: Optional[str] = None
for specified_range in unicode_ranges:
if "Latin" not in specified_range:
primary_range = specified_range
break
if primary_range is None:
return ["Latin Based"]
return unicode_range_languages(primary_range)
@lru_cache()
def mb_encoding_languages(iana_name: str) -> List[str]:
"""
Multi-byte encoding language association. Some code page are heavily linked to particular language(s).
This function does the correspondence.
"""
if (
iana_name.startswith("shift_")
or iana_name.startswith("iso2022_jp")
or iana_name.startswith("euc_j")
or iana_name == "cp932"
):
return ["Japanese"]
if iana_name.startswith("gb") or iana_name in ZH_NAMES:
return ["Chinese"]
if iana_name.startswith("iso2022_kr") or iana_name in KO_NAMES:
return ["Korean"]
return []
@lru_cache(maxsize=LANGUAGE_SUPPORTED_COUNT)
def get_target_features(language: str) -> Tuple[bool, bool]:
"""
Determine main aspects from a supported language if it contains accents and if is pure Latin.
"""
target_have_accents: bool = False
target_pure_latin: bool = True
for character in FREQUENCIES[language]:
if not target_have_accents and is_accentuated(character):
target_have_accents = True
if target_pure_latin and is_latin(character) is False:
target_pure_latin = False
return target_have_accents, target_pure_latin
def alphabet_languages(
characters: List[str], ignore_non_latin: bool = False
) -> List[str]:
"""
Return associated languages associated to given characters.
"""
languages: List[Tuple[str, float]] = []
source_have_accents = any(is_accentuated(character) for character in characters)
for language, language_characters in FREQUENCIES.items():
target_have_accents, target_pure_latin = get_target_features(language)
if ignore_non_latin and target_pure_latin is False:
continue
if target_have_accents is False and source_have_accents:
continue
character_count: int = len(language_characters)
character_match_count: int = len(
[c for c in language_characters if c in characters]
)
ratio: float = character_match_count / character_count
if ratio >= 0.2:
languages.append((language, ratio))
languages = sorted(languages, key=lambda x: x[1], reverse=True)
return [compatible_language[0] for compatible_language in languages]
def characters_popularity_compare(
language: str, ordered_characters: List[str]
) -> float:
"""
Determine if a ordered characters list (by occurrence from most appearance to rarest) match a particular language.
The result is a ratio between 0. (absolutely no correspondence) and 1. (near perfect fit).
Beware that is function is not strict on the match in order to ease the detection. (Meaning close match is 1.)
"""
if language not in FREQUENCIES:
raise ValueError("{} not available".format(language))
character_approved_count: int = 0
FREQUENCIES_language_set = set(FREQUENCIES[language])
ordered_characters_count: int = len(ordered_characters)
target_language_characters_count: int = len(FREQUENCIES[language])
large_alphabet: bool = target_language_characters_count > 26
for character, character_rank in zip(
ordered_characters, range(0, ordered_characters_count)
):
if character not in FREQUENCIES_language_set:
continue
character_rank_in_language: int = FREQUENCIES[language].index(character)
expected_projection_ratio: float = (
target_language_characters_count / ordered_characters_count
)
character_rank_projection: int = int(character_rank * expected_projection_ratio)
if (
large_alphabet is False
and abs(character_rank_projection - character_rank_in_language) > 4
):
continue
if (
large_alphabet is True
and abs(character_rank_projection - character_rank_in_language)
< target_language_characters_count / 3
):
character_approved_count += 1
continue
characters_before_source: List[str] = FREQUENCIES[language][
0:character_rank_in_language
]
characters_after_source: List[str] = FREQUENCIES[language][
character_rank_in_language:
]
characters_before: List[str] = ordered_characters[0:character_rank]
characters_after: List[str] = ordered_characters[character_rank:]
before_match_count: int = len(
set(characters_before) & set(characters_before_source)
)
after_match_count: int = len(
set(characters_after) & set(characters_after_source)
)
if len(characters_before_source) == 0 and before_match_count <= 4:
character_approved_count += 1
continue
if len(characters_after_source) == 0 and after_match_count <= 4:
character_approved_count += 1
continue
if (
before_match_count / len(characters_before_source) >= 0.4
or after_match_count / len(characters_after_source) >= 0.4
):
character_approved_count += 1
continue
return character_approved_count / len(ordered_characters)
def alpha_unicode_split(decoded_sequence: str) -> List[str]:
"""
Given a decoded text sequence, return a list of str. Unicode range / alphabet separation.
Ex. a text containing English/Latin with a bit a Hebrew will return two items in the resulting list;
One containing the latin letters and the other hebrew.
"""
layers: Dict[str, str] = {}
for character in decoded_sequence:
if character.isalpha() is False:
continue
character_range: Optional[str] = unicode_range(character)
if character_range is None:
continue
layer_target_range: Optional[str] = None
for discovered_range in layers:
if (
is_suspiciously_successive_range(discovered_range, character_range)
is False
):
layer_target_range = discovered_range
break
if layer_target_range is None:
layer_target_range = character_range
if layer_target_range not in layers:
layers[layer_target_range] = character.lower()
continue
layers[layer_target_range] += character.lower()
return list(layers.values())
def merge_coherence_ratios(results: List[CoherenceMatches]) -> CoherenceMatches:
"""
This function merge results previously given by the function coherence_ratio.
The return type is the same as coherence_ratio.
"""
per_language_ratios: Dict[str, List[float]] = {}
for result in results:
for sub_result in result:
language, ratio = sub_result
if language not in per_language_ratios:
per_language_ratios[language] = [ratio]
continue
per_language_ratios[language].append(ratio)
merge = [
(
language,
round(
sum(per_language_ratios[language]) / len(per_language_ratios[language]),
4,
),
)
for language in per_language_ratios
]
return sorted(merge, key=lambda x: x[1], reverse=True)
def filter_alt_coherence_matches(results: CoherenceMatches) -> CoherenceMatches:
"""
We shall NOT return "English—" in CoherenceMatches because it is an alternative
of "English". This function only keeps the best match and remove the em-dash in it.
"""
index_results: Dict[str, List[float]] = dict()
for result in results:
language, ratio = result
no_em_name: str = language.replace("", "")
if no_em_name not in index_results:
index_results[no_em_name] = []
index_results[no_em_name].append(ratio)
if any(len(index_results[e]) > 1 for e in index_results):
filtered_results: CoherenceMatches = []
for language in index_results:
filtered_results.append((language, max(index_results[language])))
return filtered_results
return results
@lru_cache(maxsize=2048)
def coherence_ratio(
decoded_sequence: str, threshold: float = 0.1, lg_inclusion: Optional[str] = None
) -> CoherenceMatches:
"""
Detect ANY language that can be identified in given sequence. The sequence will be analysed by layers.
A layer = Character extraction by alphabets/ranges.
"""
results: List[Tuple[str, float]] = []
ignore_non_latin: bool = False
sufficient_match_count: int = 0
lg_inclusion_list = lg_inclusion.split(",") if lg_inclusion is not None else []
if "Latin Based" in lg_inclusion_list:
ignore_non_latin = True
lg_inclusion_list.remove("Latin Based")
for layer in alpha_unicode_split(decoded_sequence):
sequence_frequencies: TypeCounter[str] = Counter(layer)
most_common = sequence_frequencies.most_common()
character_count: int = sum(o for c, o in most_common)
if character_count <= TOO_SMALL_SEQUENCE:
continue
popular_character_ordered: List[str] = [c for c, o in most_common]
for language in lg_inclusion_list or alphabet_languages(
popular_character_ordered, ignore_non_latin
):
ratio: float = characters_popularity_compare(
language, popular_character_ordered
)
if ratio < threshold:
continue
elif ratio >= 0.8:
sufficient_match_count += 1
results.append((language, round(ratio, 4)))
if sufficient_match_count >= 3:
break
return sorted(
filter_alt_coherence_matches(results), key=lambda x: x[1], reverse=True
)

View File

@ -0,0 +1,6 @@
from .__main__ import cli_detect, query_yes_no
__all__ = (
"cli_detect",
"query_yes_no",
)

View File

@ -0,0 +1,296 @@
import argparse
import sys
from json import dumps
from os.path import abspath, basename, dirname, join, realpath
from platform import python_version
from typing import List, Optional
from unicodedata import unidata_version
import charset_normalizer.md as md_module
from charset_normalizer import from_fp
from charset_normalizer.models import CliDetectionResult
from charset_normalizer.version import __version__
def query_yes_no(question: str, default: str = "yes") -> bool:
"""Ask a yes/no question via input() and return their answer.
"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
The "answer" return value is True for "yes" or False for "no".
Credit goes to (c) https://stackoverflow.com/questions/3041986/apt-command-line-interface-like-yes-no-input
"""
valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False}
if default is None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if default is not None and choice == "":
return valid[default]
elif choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n")
def cli_detect(argv: Optional[List[str]] = None) -> int:
"""
CLI assistant using ARGV and ArgumentParser
:param argv:
:return: 0 if everything is fine, anything else equal trouble
"""
parser = argparse.ArgumentParser(
description="The Real First Universal Charset Detector. "
"Discover originating encoding used on text file. "
"Normalize text to unicode."
)
parser.add_argument(
"files", type=argparse.FileType("rb"), nargs="+", help="File(s) to be analysed"
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
default=False,
dest="verbose",
help="Display complementary information about file if any. "
"Stdout will contain logs about the detection process.",
)
parser.add_argument(
"-a",
"--with-alternative",
action="store_true",
default=False,
dest="alternatives",
help="Output complementary possibilities if any. Top-level JSON WILL be a list.",
)
parser.add_argument(
"-n",
"--normalize",
action="store_true",
default=False,
dest="normalize",
help="Permit to normalize input file. If not set, program does not write anything.",
)
parser.add_argument(
"-m",
"--minimal",
action="store_true",
default=False,
dest="minimal",
help="Only output the charset detected to STDOUT. Disabling JSON output.",
)
parser.add_argument(
"-r",
"--replace",
action="store_true",
default=False,
dest="replace",
help="Replace file when trying to normalize it instead of creating a new one.",
)
parser.add_argument(
"-f",
"--force",
action="store_true",
default=False,
dest="force",
help="Replace file without asking if you are sure, use this flag with caution.",
)
parser.add_argument(
"-t",
"--threshold",
action="store",
default=0.2,
type=float,
dest="threshold",
help="Define a custom maximum amount of chaos allowed in decoded content. 0. <= chaos <= 1.",
)
parser.add_argument(
"--version",
action="version",
version="Charset-Normalizer {} - Python {} - Unicode {} - SpeedUp {}".format(
__version__,
python_version(),
unidata_version,
"OFF" if md_module.__file__.lower().endswith(".py") else "ON",
),
help="Show version information and exit.",
)
args = parser.parse_args(argv)
if args.replace is True and args.normalize is False:
print("Use --replace in addition of --normalize only.", file=sys.stderr)
return 1
if args.force is True and args.replace is False:
print("Use --force in addition of --replace only.", file=sys.stderr)
return 1
if args.threshold < 0.0 or args.threshold > 1.0:
print("--threshold VALUE should be between 0. AND 1.", file=sys.stderr)
return 1
x_ = []
for my_file in args.files:
matches = from_fp(my_file, threshold=args.threshold, explain=args.verbose)
best_guess = matches.best()
if best_guess is None:
print(
'Unable to identify originating encoding for "{}". {}'.format(
my_file.name,
"Maybe try increasing maximum amount of chaos."
if args.threshold < 1.0
else "",
),
file=sys.stderr,
)
x_.append(
CliDetectionResult(
abspath(my_file.name),
None,
[],
[],
"Unknown",
[],
False,
1.0,
0.0,
None,
True,
)
)
else:
x_.append(
CliDetectionResult(
abspath(my_file.name),
best_guess.encoding,
best_guess.encoding_aliases,
[
cp
for cp in best_guess.could_be_from_charset
if cp != best_guess.encoding
],
best_guess.language,
best_guess.alphabets,
best_guess.bom,
best_guess.percent_chaos,
best_guess.percent_coherence,
None,
True,
)
)
if len(matches) > 1 and args.alternatives:
for el in matches:
if el != best_guess:
x_.append(
CliDetectionResult(
abspath(my_file.name),
el.encoding,
el.encoding_aliases,
[
cp
for cp in el.could_be_from_charset
if cp != el.encoding
],
el.language,
el.alphabets,
el.bom,
el.percent_chaos,
el.percent_coherence,
None,
False,
)
)
if args.normalize is True:
if best_guess.encoding.startswith("utf") is True:
print(
'"{}" file does not need to be normalized, as it already came from unicode.'.format(
my_file.name
),
file=sys.stderr,
)
if my_file.closed is False:
my_file.close()
continue
dir_path = dirname(realpath(my_file.name))
file_name = basename(realpath(my_file.name))
o_: List[str] = file_name.split(".")
if args.replace is False:
o_.insert(-1, best_guess.encoding)
if my_file.closed is False:
my_file.close()
elif (
args.force is False
and query_yes_no(
'Are you sure to normalize "{}" by replacing it ?'.format(
my_file.name
),
"no",
)
is False
):
if my_file.closed is False:
my_file.close()
continue
try:
x_[0].unicode_path = join(dir_path, ".".join(o_))
with open(x_[0].unicode_path, "w", encoding="utf-8") as fp:
fp.write(str(best_guess))
except IOError as e:
print(str(e), file=sys.stderr)
if my_file.closed is False:
my_file.close()
return 2
if my_file.closed is False:
my_file.close()
if args.minimal is False:
print(
dumps(
[el.__dict__ for el in x_] if len(x_) > 1 else x_[0].__dict__,
ensure_ascii=True,
indent=4,
)
)
else:
for my_file in args.files:
print(
", ".join(
[
el.encoding or "undefined"
for el in x_
if el.path == abspath(my_file.name)
]
)
)
return 0
if __name__ == "__main__":
cli_detect()

View File

@ -0,0 +1,54 @@
from typing import Any, Dict, Optional, Union
from warnings import warn
from .api import from_bytes
from .constant import CHARDET_CORRESPONDENCE
def detect(
byte_str: bytes, should_rename_legacy: bool = False, **kwargs: Any
) -> Dict[str, Optional[Union[str, float]]]:
"""
chardet legacy method
Detect the encoding of the given byte string. It should be mostly backward-compatible.
Encoding name will match Chardet own writing whenever possible. (Not on encoding name unsupported by it)
This function is deprecated and should be used to migrate your project easily, consult the documentation for
further information. Not planned for removal.
:param byte_str: The byte sequence to examine.
:param should_rename_legacy: Should we rename legacy encodings
to their more modern equivalents?
"""
if len(kwargs):
warn(
f"charset-normalizer disregard arguments '{','.join(list(kwargs.keys()))}' in legacy function detect()"
)
if not isinstance(byte_str, (bytearray, bytes)):
raise TypeError( # pragma: nocover
"Expected object of type bytes or bytearray, got: "
"{0}".format(type(byte_str))
)
if isinstance(byte_str, bytearray):
byte_str = bytes(byte_str)
r = from_bytes(byte_str).best()
encoding = r.encoding if r is not None else None
language = r.language if r is not None and r.language != "Unknown" else ""
confidence = 1.0 - r.chaos if r is not None else None
# Note: CharsetNormalizer does not return 'UTF-8-SIG' as the sig get stripped in the detection/normalization process
# but chardet does return 'utf-8-sig' and it is a valid codec name.
if r is not None and encoding == "utf_8" and r.bom:
encoding += "_sig"
if should_rename_legacy is False and encoding in CHARDET_CORRESPONDENCE:
encoding = CHARDET_CORRESPONDENCE[encoding]
return {
"encoding": encoding,
"language": language,
"confidence": confidence,
}

View File

@ -0,0 +1,615 @@
from functools import lru_cache
from logging import getLogger
from typing import List, Optional
from .constant import (
COMMON_SAFE_ASCII_CHARACTERS,
TRACE,
UNICODE_SECONDARY_RANGE_KEYWORD,
)
from .utils import (
is_accentuated,
is_arabic,
is_arabic_isolated_form,
is_case_variable,
is_cjk,
is_emoticon,
is_hangul,
is_hiragana,
is_katakana,
is_latin,
is_punctuation,
is_separator,
is_symbol,
is_thai,
is_unprintable,
remove_accent,
unicode_range,
)
class MessDetectorPlugin:
"""
Base abstract class used for mess detection plugins.
All detectors MUST extend and implement given methods.
"""
def eligible(self, character: str) -> bool:
"""
Determine if given character should be fed in.
"""
raise NotImplementedError # pragma: nocover
def feed(self, character: str) -> None:
"""
The main routine to be executed upon character.
Insert the logic in witch the text would be considered chaotic.
"""
raise NotImplementedError # pragma: nocover
def reset(self) -> None: # pragma: no cover
"""
Permit to reset the plugin to the initial state.
"""
raise NotImplementedError
@property
def ratio(self) -> float:
"""
Compute the chaos ratio based on what your feed() has seen.
Must NOT be lower than 0.; No restriction gt 0.
"""
raise NotImplementedError # pragma: nocover
class TooManySymbolOrPunctuationPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._punctuation_count: int = 0
self._symbol_count: int = 0
self._character_count: int = 0
self._last_printable_char: Optional[str] = None
self._frenzy_symbol_in_word: bool = False
def eligible(self, character: str) -> bool:
return character.isprintable()
def feed(self, character: str) -> None:
self._character_count += 1
if (
character != self._last_printable_char
and character not in COMMON_SAFE_ASCII_CHARACTERS
):
if is_punctuation(character):
self._punctuation_count += 1
elif (
character.isdigit() is False
and is_symbol(character)
and is_emoticon(character) is False
):
self._symbol_count += 2
self._last_printable_char = character
def reset(self) -> None: # pragma: no cover
self._punctuation_count = 0
self._character_count = 0
self._symbol_count = 0
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
ratio_of_punctuation: float = (
self._punctuation_count + self._symbol_count
) / self._character_count
return ratio_of_punctuation if ratio_of_punctuation >= 0.3 else 0.0
class TooManyAccentuatedPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._character_count: int = 0
self._accentuated_count: int = 0
def eligible(self, character: str) -> bool:
return character.isalpha()
def feed(self, character: str) -> None:
self._character_count += 1
if is_accentuated(character):
self._accentuated_count += 1
def reset(self) -> None: # pragma: no cover
self._character_count = 0
self._accentuated_count = 0
@property
def ratio(self) -> float:
if self._character_count < 8:
return 0.0
ratio_of_accentuation: float = self._accentuated_count / self._character_count
return ratio_of_accentuation if ratio_of_accentuation >= 0.35 else 0.0
class UnprintablePlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._unprintable_count: int = 0
self._character_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if is_unprintable(character):
self._unprintable_count += 1
self._character_count += 1
def reset(self) -> None: # pragma: no cover
self._unprintable_count = 0
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return (self._unprintable_count * 8) / self._character_count
class SuspiciousDuplicateAccentPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._successive_count: int = 0
self._character_count: int = 0
self._last_latin_character: Optional[str] = None
def eligible(self, character: str) -> bool:
return character.isalpha() and is_latin(character)
def feed(self, character: str) -> None:
self._character_count += 1
if (
self._last_latin_character is not None
and is_accentuated(character)
and is_accentuated(self._last_latin_character)
):
if character.isupper() and self._last_latin_character.isupper():
self._successive_count += 1
# Worse if its the same char duplicated with different accent.
if remove_accent(character) == remove_accent(self._last_latin_character):
self._successive_count += 1
self._last_latin_character = character
def reset(self) -> None: # pragma: no cover
self._successive_count = 0
self._character_count = 0
self._last_latin_character = None
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return (self._successive_count * 2) / self._character_count
class SuspiciousRange(MessDetectorPlugin):
def __init__(self) -> None:
self._suspicious_successive_range_count: int = 0
self._character_count: int = 0
self._last_printable_seen: Optional[str] = None
def eligible(self, character: str) -> bool:
return character.isprintable()
def feed(self, character: str) -> None:
self._character_count += 1
if (
character.isspace()
or is_punctuation(character)
or character in COMMON_SAFE_ASCII_CHARACTERS
):
self._last_printable_seen = None
return
if self._last_printable_seen is None:
self._last_printable_seen = character
return
unicode_range_a: Optional[str] = unicode_range(self._last_printable_seen)
unicode_range_b: Optional[str] = unicode_range(character)
if is_suspiciously_successive_range(unicode_range_a, unicode_range_b):
self._suspicious_successive_range_count += 1
self._last_printable_seen = character
def reset(self) -> None: # pragma: no cover
self._character_count = 0
self._suspicious_successive_range_count = 0
self._last_printable_seen = None
@property
def ratio(self) -> float:
if self._character_count <= 24:
return 0.0
ratio_of_suspicious_range_usage: float = (
self._suspicious_successive_range_count * 2
) / self._character_count
return ratio_of_suspicious_range_usage
class SuperWeirdWordPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._word_count: int = 0
self._bad_word_count: int = 0
self._foreign_long_count: int = 0
self._is_current_word_bad: bool = False
self._foreign_long_watch: bool = False
self._character_count: int = 0
self._bad_character_count: int = 0
self._buffer: str = ""
self._buffer_accent_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if character.isalpha():
self._buffer += character
if is_accentuated(character):
self._buffer_accent_count += 1
if (
self._foreign_long_watch is False
and (is_latin(character) is False or is_accentuated(character))
and is_cjk(character) is False
and is_hangul(character) is False
and is_katakana(character) is False
and is_hiragana(character) is False
and is_thai(character) is False
):
self._foreign_long_watch = True
return
if not self._buffer:
return
if (
character.isspace() or is_punctuation(character) or is_separator(character)
) and self._buffer:
self._word_count += 1
buffer_length: int = len(self._buffer)
self._character_count += buffer_length
if buffer_length >= 4:
if self._buffer_accent_count / buffer_length > 0.34:
self._is_current_word_bad = True
# Word/Buffer ending with an upper case accentuated letter are so rare,
# that we will consider them all as suspicious. Same weight as foreign_long suspicious.
if (
is_accentuated(self._buffer[-1])
and self._buffer[-1].isupper()
and all(_.isupper() for _ in self._buffer) is False
):
self._foreign_long_count += 1
self._is_current_word_bad = True
if buffer_length >= 24 and self._foreign_long_watch:
camel_case_dst = [
i
for c, i in zip(self._buffer, range(0, buffer_length))
if c.isupper()
]
probable_camel_cased: bool = False
if camel_case_dst and (len(camel_case_dst) / buffer_length <= 0.3):
probable_camel_cased = True
if not probable_camel_cased:
self._foreign_long_count += 1
self._is_current_word_bad = True
if self._is_current_word_bad:
self._bad_word_count += 1
self._bad_character_count += len(self._buffer)
self._is_current_word_bad = False
self._foreign_long_watch = False
self._buffer = ""
self._buffer_accent_count = 0
elif (
character not in {"<", ">", "-", "=", "~", "|", "_"}
and character.isdigit() is False
and is_symbol(character)
):
self._is_current_word_bad = True
self._buffer += character
def reset(self) -> None: # pragma: no cover
self._buffer = ""
self._is_current_word_bad = False
self._foreign_long_watch = False
self._bad_word_count = 0
self._word_count = 0
self._character_count = 0
self._bad_character_count = 0
self._foreign_long_count = 0
@property
def ratio(self) -> float:
if self._word_count <= 10 and self._foreign_long_count == 0:
return 0.0
return self._bad_character_count / self._character_count
class CjkInvalidStopPlugin(MessDetectorPlugin):
"""
GB(Chinese) based encoding often render the stop incorrectly when the content does not fit and
can be easily detected. Searching for the overuse of '' and ''.
"""
def __init__(self) -> None:
self._wrong_stop_count: int = 0
self._cjk_character_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if character in {"", ""}:
self._wrong_stop_count += 1
return
if is_cjk(character):
self._cjk_character_count += 1
def reset(self) -> None: # pragma: no cover
self._wrong_stop_count = 0
self._cjk_character_count = 0
@property
def ratio(self) -> float:
if self._cjk_character_count < 16:
return 0.0
return self._wrong_stop_count / self._cjk_character_count
class ArchaicUpperLowerPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._buf: bool = False
self._character_count_since_last_sep: int = 0
self._successive_upper_lower_count: int = 0
self._successive_upper_lower_count_final: int = 0
self._character_count: int = 0
self._last_alpha_seen: Optional[str] = None
self._current_ascii_only: bool = True
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
is_concerned = character.isalpha() and is_case_variable(character)
chunk_sep = is_concerned is False
if chunk_sep and self._character_count_since_last_sep > 0:
if (
self._character_count_since_last_sep <= 64
and character.isdigit() is False
and self._current_ascii_only is False
):
self._successive_upper_lower_count_final += (
self._successive_upper_lower_count
)
self._successive_upper_lower_count = 0
self._character_count_since_last_sep = 0
self._last_alpha_seen = None
self._buf = False
self._character_count += 1
self._current_ascii_only = True
return
if self._current_ascii_only is True and character.isascii() is False:
self._current_ascii_only = False
if self._last_alpha_seen is not None:
if (character.isupper() and self._last_alpha_seen.islower()) or (
character.islower() and self._last_alpha_seen.isupper()
):
if self._buf is True:
self._successive_upper_lower_count += 2
self._buf = False
else:
self._buf = True
else:
self._buf = False
self._character_count += 1
self._character_count_since_last_sep += 1
self._last_alpha_seen = character
def reset(self) -> None: # pragma: no cover
self._character_count = 0
self._character_count_since_last_sep = 0
self._successive_upper_lower_count = 0
self._successive_upper_lower_count_final = 0
self._last_alpha_seen = None
self._buf = False
self._current_ascii_only = True
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return self._successive_upper_lower_count_final / self._character_count
class ArabicIsolatedFormPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._character_count: int = 0
self._isolated_form_count: int = 0
def reset(self) -> None: # pragma: no cover
self._character_count = 0
self._isolated_form_count = 0
def eligible(self, character: str) -> bool:
return is_arabic(character)
def feed(self, character: str) -> None:
self._character_count += 1
if is_arabic_isolated_form(character):
self._isolated_form_count += 1
@property
def ratio(self) -> float:
if self._character_count < 8:
return 0.0
isolated_form_usage: float = self._isolated_form_count / self._character_count
return isolated_form_usage
@lru_cache(maxsize=1024)
def is_suspiciously_successive_range(
unicode_range_a: Optional[str], unicode_range_b: Optional[str]
) -> bool:
"""
Determine if two Unicode range seen next to each other can be considered as suspicious.
"""
if unicode_range_a is None or unicode_range_b is None:
return True
if unicode_range_a == unicode_range_b:
return False
if "Latin" in unicode_range_a and "Latin" in unicode_range_b:
return False
if "Emoticons" in unicode_range_a or "Emoticons" in unicode_range_b:
return False
# Latin characters can be accompanied with a combining diacritical mark
# eg. Vietnamese.
if ("Latin" in unicode_range_a or "Latin" in unicode_range_b) and (
"Combining" in unicode_range_a or "Combining" in unicode_range_b
):
return False
keywords_range_a, keywords_range_b = unicode_range_a.split(
" "
), unicode_range_b.split(" ")
for el in keywords_range_a:
if el in UNICODE_SECONDARY_RANGE_KEYWORD:
continue
if el in keywords_range_b:
return False
# Japanese Exception
range_a_jp_chars, range_b_jp_chars = (
unicode_range_a
in (
"Hiragana",
"Katakana",
),
unicode_range_b in ("Hiragana", "Katakana"),
)
if (range_a_jp_chars or range_b_jp_chars) and (
"CJK" in unicode_range_a or "CJK" in unicode_range_b
):
return False
if range_a_jp_chars and range_b_jp_chars:
return False
if "Hangul" in unicode_range_a or "Hangul" in unicode_range_b:
if "CJK" in unicode_range_a or "CJK" in unicode_range_b:
return False
if unicode_range_a == "Basic Latin" or unicode_range_b == "Basic Latin":
return False
# Chinese/Japanese use dedicated range for punctuation and/or separators.
if ("CJK" in unicode_range_a or "CJK" in unicode_range_b) or (
unicode_range_a in ["Katakana", "Hiragana"]
and unicode_range_b in ["Katakana", "Hiragana"]
):
if "Punctuation" in unicode_range_a or "Punctuation" in unicode_range_b:
return False
if "Forms" in unicode_range_a or "Forms" in unicode_range_b:
return False
if unicode_range_a == "Basic Latin" or unicode_range_b == "Basic Latin":
return False
return True
@lru_cache(maxsize=2048)
def mess_ratio(
decoded_sequence: str, maximum_threshold: float = 0.2, debug: bool = False
) -> float:
"""
Compute a mess ratio given a decoded bytes sequence. The maximum threshold does stop the computation earlier.
"""
detectors: List[MessDetectorPlugin] = [
md_class() for md_class in MessDetectorPlugin.__subclasses__()
]
length: int = len(decoded_sequence) + 1
mean_mess_ratio: float = 0.0
if length < 512:
intermediary_mean_mess_ratio_calc: int = 32
elif length <= 1024:
intermediary_mean_mess_ratio_calc = 64
else:
intermediary_mean_mess_ratio_calc = 128
for character, index in zip(decoded_sequence + "\n", range(length)):
for detector in detectors:
if detector.eligible(character):
detector.feed(character)
if (
index > 0 and index % intermediary_mean_mess_ratio_calc == 0
) or index == length - 1:
mean_mess_ratio = sum(dt.ratio for dt in detectors)
if mean_mess_ratio >= maximum_threshold:
break
if debug:
logger = getLogger("charset_normalizer")
logger.log(
TRACE,
"Mess-detector extended-analysis start. "
f"intermediary_mean_mess_ratio_calc={intermediary_mean_mess_ratio_calc} mean_mess_ratio={mean_mess_ratio} "
f"maximum_threshold={maximum_threshold}",
)
if len(decoded_sequence) > 16:
logger.log(TRACE, f"Starting with: {decoded_sequence[:16]}")
logger.log(TRACE, f"Ending with: {decoded_sequence[-16::]}")
for dt in detectors: # pragma: nocover
logger.log(TRACE, f"{dt.__class__}: {dt.ratio}")
return round(mean_mess_ratio, 3)

View File

@ -0,0 +1,340 @@
from encodings.aliases import aliases
from hashlib import sha256
from json import dumps
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
from .constant import TOO_BIG_SEQUENCE
from .utils import iana_name, is_multi_byte_encoding, unicode_range
class CharsetMatch:
def __init__(
self,
payload: bytes,
guessed_encoding: str,
mean_mess_ratio: float,
has_sig_or_bom: bool,
languages: "CoherenceMatches",
decoded_payload: Optional[str] = None,
):
self._payload: bytes = payload
self._encoding: str = guessed_encoding
self._mean_mess_ratio: float = mean_mess_ratio
self._languages: CoherenceMatches = languages
self._has_sig_or_bom: bool = has_sig_or_bom
self._unicode_ranges: Optional[List[str]] = None
self._leaves: List[CharsetMatch] = []
self._mean_coherence_ratio: float = 0.0
self._output_payload: Optional[bytes] = None
self._output_encoding: Optional[str] = None
self._string: Optional[str] = decoded_payload
def __eq__(self, other: object) -> bool:
if not isinstance(other, CharsetMatch):
raise TypeError(
"__eq__ cannot be invoked on {} and {}.".format(
str(other.__class__), str(self.__class__)
)
)
return self.encoding == other.encoding and self.fingerprint == other.fingerprint
def __lt__(self, other: object) -> bool:
"""
Implemented to make sorted available upon CharsetMatches items.
"""
if not isinstance(other, CharsetMatch):
raise ValueError
chaos_difference: float = abs(self.chaos - other.chaos)
coherence_difference: float = abs(self.coherence - other.coherence)
# Below 1% difference --> Use Coherence
if chaos_difference < 0.01 and coherence_difference > 0.02:
return self.coherence > other.coherence
elif chaos_difference < 0.01 and coherence_difference <= 0.02:
# When having a difficult decision, use the result that decoded as many multi-byte as possible.
# preserve RAM usage!
if len(self._payload) >= TOO_BIG_SEQUENCE:
return self.chaos < other.chaos
return self.multi_byte_usage > other.multi_byte_usage
return self.chaos < other.chaos
@property
def multi_byte_usage(self) -> float:
return 1.0 - (len(str(self)) / len(self.raw))
def __str__(self) -> str:
# Lazy Str Loading
if self._string is None:
self._string = str(self._payload, self._encoding, "strict")
return self._string
def __repr__(self) -> str:
return "<CharsetMatch '{}' bytes({})>".format(self.encoding, self.fingerprint)
def add_submatch(self, other: "CharsetMatch") -> None:
if not isinstance(other, CharsetMatch) or other == self:
raise ValueError(
"Unable to add instance <{}> as a submatch of a CharsetMatch".format(
other.__class__
)
)
other._string = None # Unload RAM usage; dirty trick.
self._leaves.append(other)
@property
def encoding(self) -> str:
return self._encoding
@property
def encoding_aliases(self) -> List[str]:
"""
Encoding name are known by many name, using this could help when searching for IBM855 when it's listed as CP855.
"""
also_known_as: List[str] = []
for u, p in aliases.items():
if self.encoding == u:
also_known_as.append(p)
elif self.encoding == p:
also_known_as.append(u)
return also_known_as
@property
def bom(self) -> bool:
return self._has_sig_or_bom
@property
def byte_order_mark(self) -> bool:
return self._has_sig_or_bom
@property
def languages(self) -> List[str]:
"""
Return the complete list of possible languages found in decoded sequence.
Usually not really useful. Returned list may be empty even if 'language' property return something != 'Unknown'.
"""
return [e[0] for e in self._languages]
@property
def language(self) -> str:
"""
Most probable language found in decoded sequence. If none were detected or inferred, the property will return
"Unknown".
"""
if not self._languages:
# Trying to infer the language based on the given encoding
# Its either English or we should not pronounce ourselves in certain cases.
if "ascii" in self.could_be_from_charset:
return "English"
# doing it there to avoid circular import
from charset_normalizer.cd import encoding_languages, mb_encoding_languages
languages = (
mb_encoding_languages(self.encoding)
if is_multi_byte_encoding(self.encoding)
else encoding_languages(self.encoding)
)
if len(languages) == 0 or "Latin Based" in languages:
return "Unknown"
return languages[0]
return self._languages[0][0]
@property
def chaos(self) -> float:
return self._mean_mess_ratio
@property
def coherence(self) -> float:
if not self._languages:
return 0.0
return self._languages[0][1]
@property
def percent_chaos(self) -> float:
return round(self.chaos * 100, ndigits=3)
@property
def percent_coherence(self) -> float:
return round(self.coherence * 100, ndigits=3)
@property
def raw(self) -> bytes:
"""
Original untouched bytes.
"""
return self._payload
@property
def submatch(self) -> List["CharsetMatch"]:
return self._leaves
@property
def has_submatch(self) -> bool:
return len(self._leaves) > 0
@property
def alphabets(self) -> List[str]:
if self._unicode_ranges is not None:
return self._unicode_ranges
# list detected ranges
detected_ranges: List[Optional[str]] = [
unicode_range(char) for char in str(self)
]
# filter and sort
self._unicode_ranges = sorted(list({r for r in detected_ranges if r}))
return self._unicode_ranges
@property
def could_be_from_charset(self) -> List[str]:
"""
The complete list of encoding that output the exact SAME str result and therefore could be the originating
encoding.
This list does include the encoding available in property 'encoding'.
"""
return [self._encoding] + [m.encoding for m in self._leaves]
def output(self, encoding: str = "utf_8") -> bytes:
"""
Method to get re-encoded bytes payload using given target encoding. Default to UTF-8.
Any errors will be simply ignored by the encoder NOT replaced.
"""
if self._output_encoding is None or self._output_encoding != encoding:
self._output_encoding = encoding
self._output_payload = str(self).encode(encoding, "replace")
return self._output_payload # type: ignore
@property
def fingerprint(self) -> str:
"""
Retrieve the unique SHA256 computed using the transformed (re-encoded) payload. Not the original one.
"""
return sha256(self.output()).hexdigest()
class CharsetMatches:
"""
Container with every CharsetMatch items ordered by default from most probable to the less one.
Act like a list(iterable) but does not implements all related methods.
"""
def __init__(self, results: Optional[List[CharsetMatch]] = None):
self._results: List[CharsetMatch] = sorted(results) if results else []
def __iter__(self) -> Iterator[CharsetMatch]:
yield from self._results
def __getitem__(self, item: Union[int, str]) -> CharsetMatch:
"""
Retrieve a single item either by its position or encoding name (alias may be used here).
Raise KeyError upon invalid index or encoding not present in results.
"""
if isinstance(item, int):
return self._results[item]
if isinstance(item, str):
item = iana_name(item, False)
for result in self._results:
if item in result.could_be_from_charset:
return result
raise KeyError
def __len__(self) -> int:
return len(self._results)
def __bool__(self) -> bool:
return len(self._results) > 0
def append(self, item: CharsetMatch) -> None:
"""
Insert a single match. Will be inserted accordingly to preserve sort.
Can be inserted as a submatch.
"""
if not isinstance(item, CharsetMatch):
raise ValueError(
"Cannot append instance '{}' to CharsetMatches".format(
str(item.__class__)
)
)
# We should disable the submatch factoring when the input file is too heavy (conserve RAM usage)
if len(item.raw) <= TOO_BIG_SEQUENCE:
for match in self._results:
if match.fingerprint == item.fingerprint and match.chaos == item.chaos:
match.add_submatch(item)
return
self._results.append(item)
self._results = sorted(self._results)
def best(self) -> Optional["CharsetMatch"]:
"""
Simply return the first match. Strict equivalent to matches[0].
"""
if not self._results:
return None
return self._results[0]
def first(self) -> Optional["CharsetMatch"]:
"""
Redundant method, call the method best(). Kept for BC reasons.
"""
return self.best()
CoherenceMatch = Tuple[str, float]
CoherenceMatches = List[CoherenceMatch]
class CliDetectionResult:
def __init__(
self,
path: str,
encoding: Optional[str],
encoding_aliases: List[str],
alternative_encodings: List[str],
language: str,
alphabets: List[str],
has_sig_or_bom: bool,
chaos: float,
coherence: float,
unicode_path: Optional[str],
is_preferred: bool,
):
self.path: str = path
self.unicode_path: Optional[str] = unicode_path
self.encoding: Optional[str] = encoding
self.encoding_aliases: List[str] = encoding_aliases
self.alternative_encodings: List[str] = alternative_encodings
self.language: str = language
self.alphabets: List[str] = alphabets
self.has_sig_or_bom: bool = has_sig_or_bom
self.chaos: float = chaos
self.coherence: float = coherence
self.is_preferred: bool = is_preferred
@property
def __dict__(self) -> Dict[str, Any]: # type: ignore
return {
"path": self.path,
"encoding": self.encoding,
"encoding_aliases": self.encoding_aliases,
"alternative_encodings": self.alternative_encodings,
"language": self.language,
"alphabets": self.alphabets,
"has_sig_or_bom": self.has_sig_or_bom,
"chaos": self.chaos,
"coherence": self.coherence,
"unicode_path": self.unicode_path,
"is_preferred": self.is_preferred,
}
def to_json(self) -> str:
return dumps(self.__dict__, ensure_ascii=True, indent=4)

View File

@ -0,0 +1,421 @@
import importlib
import logging
import unicodedata
from codecs import IncrementalDecoder
from encodings.aliases import aliases
from functools import lru_cache
from re import findall
from typing import Generator, List, Optional, Set, Tuple, Union
from _multibytecodec import MultibyteIncrementalDecoder
from .constant import (
ENCODING_MARKS,
IANA_SUPPORTED_SIMILAR,
RE_POSSIBLE_ENCODING_INDICATION,
UNICODE_RANGES_COMBINED,
UNICODE_SECONDARY_RANGE_KEYWORD,
UTF8_MAXIMAL_ALLOCATION,
)
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_accentuated(character: str) -> bool:
try:
description: str = unicodedata.name(character)
except ValueError:
return False
return (
"WITH GRAVE" in description
or "WITH ACUTE" in description
or "WITH CEDILLA" in description
or "WITH DIAERESIS" in description
or "WITH CIRCUMFLEX" in description
or "WITH TILDE" in description
or "WITH MACRON" in description
or "WITH RING ABOVE" in description
)
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def remove_accent(character: str) -> str:
decomposed: str = unicodedata.decomposition(character)
if not decomposed:
return character
codes: List[str] = decomposed.split(" ")
return chr(int(codes[0], 16))
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def unicode_range(character: str) -> Optional[str]:
"""
Retrieve the Unicode range official name from a single character.
"""
character_ord: int = ord(character)
for range_name, ord_range in UNICODE_RANGES_COMBINED.items():
if character_ord in ord_range:
return range_name
return None
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_latin(character: str) -> bool:
try:
description: str = unicodedata.name(character)
except ValueError:
return False
return "LATIN" in description
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_punctuation(character: str) -> bool:
character_category: str = unicodedata.category(character)
if "P" in character_category:
return True
character_range: Optional[str] = unicode_range(character)
if character_range is None:
return False
return "Punctuation" in character_range
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_symbol(character: str) -> bool:
character_category: str = unicodedata.category(character)
if "S" in character_category or "N" in character_category:
return True
character_range: Optional[str] = unicode_range(character)
if character_range is None:
return False
return "Forms" in character_range and character_category != "Lo"
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_emoticon(character: str) -> bool:
character_range: Optional[str] = unicode_range(character)
if character_range is None:
return False
return "Emoticons" in character_range or "Pictographs" in character_range
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_separator(character: str) -> bool:
if character.isspace() or character in {"", "+", "<", ">"}:
return True
character_category: str = unicodedata.category(character)
return "Z" in character_category or character_category in {"Po", "Pd", "Pc"}
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_case_variable(character: str) -> bool:
return character.islower() != character.isupper()
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_cjk(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError:
return False
return "CJK" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_hiragana(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError:
return False
return "HIRAGANA" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_katakana(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError:
return False
return "KATAKANA" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_hangul(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError:
return False
return "HANGUL" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_thai(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError:
return False
return "THAI" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_arabic(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError:
return False
return "ARABIC" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_arabic_isolated_form(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError:
return False
return "ARABIC" in character_name and "ISOLATED FORM" in character_name
@lru_cache(maxsize=len(UNICODE_RANGES_COMBINED))
def is_unicode_range_secondary(range_name: str) -> bool:
return any(keyword in range_name for keyword in UNICODE_SECONDARY_RANGE_KEYWORD)
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_unprintable(character: str) -> bool:
return (
character.isspace() is False # includes \n \t \r \v
and character.isprintable() is False
and character != "\x1A" # Why? Its the ASCII substitute character.
and character != "\ufeff" # bug discovered in Python,
# Zero Width No-Break Space located in Arabic Presentation Forms-B, Unicode 1.1 not acknowledged as space.
)
def any_specified_encoding(sequence: bytes, search_zone: int = 8192) -> Optional[str]:
"""
Extract using ASCII-only decoder any specified encoding in the first n-bytes.
"""
if not isinstance(sequence, bytes):
raise TypeError
seq_len: int = len(sequence)
results: List[str] = findall(
RE_POSSIBLE_ENCODING_INDICATION,
sequence[: min(seq_len, search_zone)].decode("ascii", errors="ignore"),
)
if len(results) == 0:
return None
for specified_encoding in results:
specified_encoding = specified_encoding.lower().replace("-", "_")
encoding_alias: str
encoding_iana: str
for encoding_alias, encoding_iana in aliases.items():
if encoding_alias == specified_encoding:
return encoding_iana
if encoding_iana == specified_encoding:
return encoding_iana
return None
@lru_cache(maxsize=128)
def is_multi_byte_encoding(name: str) -> bool:
"""
Verify is a specific encoding is a multi byte one based on it IANA name
"""
return name in {
"utf_8",
"utf_8_sig",
"utf_16",
"utf_16_be",
"utf_16_le",
"utf_32",
"utf_32_le",
"utf_32_be",
"utf_7",
} or issubclass(
importlib.import_module("encodings.{}".format(name)).IncrementalDecoder,
MultibyteIncrementalDecoder,
)
def identify_sig_or_bom(sequence: bytes) -> Tuple[Optional[str], bytes]:
"""
Identify and extract SIG/BOM in given sequence.
"""
for iana_encoding in ENCODING_MARKS:
marks: Union[bytes, List[bytes]] = ENCODING_MARKS[iana_encoding]
if isinstance(marks, bytes):
marks = [marks]
for mark in marks:
if sequence.startswith(mark):
return iana_encoding, mark
return None, b""
def should_strip_sig_or_bom(iana_encoding: str) -> bool:
return iana_encoding not in {"utf_16", "utf_32"}
def iana_name(cp_name: str, strict: bool = True) -> str:
cp_name = cp_name.lower().replace("-", "_")
encoding_alias: str
encoding_iana: str
for encoding_alias, encoding_iana in aliases.items():
if cp_name in [encoding_alias, encoding_iana]:
return encoding_iana
if strict:
raise ValueError("Unable to retrieve IANA for '{}'".format(cp_name))
return cp_name
def range_scan(decoded_sequence: str) -> List[str]:
ranges: Set[str] = set()
for character in decoded_sequence:
character_range: Optional[str] = unicode_range(character)
if character_range is None:
continue
ranges.add(character_range)
return list(ranges)
def cp_similarity(iana_name_a: str, iana_name_b: str) -> float:
if is_multi_byte_encoding(iana_name_a) or is_multi_byte_encoding(iana_name_b):
return 0.0
decoder_a = importlib.import_module(
"encodings.{}".format(iana_name_a)
).IncrementalDecoder
decoder_b = importlib.import_module(
"encodings.{}".format(iana_name_b)
).IncrementalDecoder
id_a: IncrementalDecoder = decoder_a(errors="ignore")
id_b: IncrementalDecoder = decoder_b(errors="ignore")
character_match_count: int = 0
for i in range(255):
to_be_decoded: bytes = bytes([i])
if id_a.decode(to_be_decoded) == id_b.decode(to_be_decoded):
character_match_count += 1
return character_match_count / 254
def is_cp_similar(iana_name_a: str, iana_name_b: str) -> bool:
"""
Determine if two code page are at least 80% similar. IANA_SUPPORTED_SIMILAR dict was generated using
the function cp_similarity.
"""
return (
iana_name_a in IANA_SUPPORTED_SIMILAR
and iana_name_b in IANA_SUPPORTED_SIMILAR[iana_name_a]
)
def set_logging_handler(
name: str = "charset_normalizer",
level: int = logging.INFO,
format_string: str = "%(asctime)s | %(levelname)s | %(message)s",
) -> None:
logger = logging.getLogger(name)
logger.setLevel(level)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(format_string))
logger.addHandler(handler)
def cut_sequence_chunks(
sequences: bytes,
encoding_iana: str,
offsets: range,
chunk_size: int,
bom_or_sig_available: bool,
strip_sig_or_bom: bool,
sig_payload: bytes,
is_multi_byte_decoder: bool,
decoded_payload: Optional[str] = None,
) -> Generator[str, None, None]:
if decoded_payload and is_multi_byte_decoder is False:
for i in offsets:
chunk = decoded_payload[i : i + chunk_size]
if not chunk:
break
yield chunk
else:
for i in offsets:
chunk_end = i + chunk_size
if chunk_end > len(sequences) + 8:
continue
cut_sequence = sequences[i : i + chunk_size]
if bom_or_sig_available and strip_sig_or_bom is False:
cut_sequence = sig_payload + cut_sequence
chunk = cut_sequence.decode(
encoding_iana,
errors="ignore" if is_multi_byte_decoder else "strict",
)
# multi-byte bad cutting detector and adjustment
# not the cleanest way to perform that fix but clever enough for now.
if is_multi_byte_decoder and i > 0:
chunk_partial_size_chk: int = min(chunk_size, 16)
if (
decoded_payload
and chunk[:chunk_partial_size_chk] not in decoded_payload
):
for j in range(i, i - 4, -1):
cut_sequence = sequences[j:chunk_end]
if bom_or_sig_available and strip_sig_or_bom is False:
cut_sequence = sig_payload + cut_sequence
chunk = cut_sequence.decode(encoding_iana, errors="ignore")
if chunk[:chunk_partial_size_chk] in decoded_payload:
break
yield chunk

View File

@ -0,0 +1,6 @@
"""
Expose version
"""
__version__ = "3.3.2"
VERSION = __version__.split(".")

View File

@ -0,0 +1,31 @@
BSD 3-Clause License
Copyright (c) 2013-2024, Kim Davies and contributors.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,245 @@
Metadata-Version: 2.1
Name: idna
Version: 3.8
Summary: Internationalized Domain Names in Applications (IDNA)
Author-email: Kim Davies <kim+pypi@gumleaf.org>
Requires-Python: >=3.6
Description-Content-Type: text/x-rst
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Internet :: Name Service (DNS)
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Utilities
Project-URL: Changelog, https://github.com/kjd/idna/blob/master/HISTORY.rst
Project-URL: Issue tracker, https://github.com/kjd/idna/issues
Project-URL: Source, https://github.com/kjd/idna
Internationalized Domain Names in Applications (IDNA)
=====================================================
Support for the Internationalized Domain Names in
Applications (IDNA) protocol as specified in `RFC 5891
<https://tools.ietf.org/html/rfc5891>`_. This is the latest version of
the protocol and is sometimes referred to as “IDNA 2008”.
This library also provides support for Unicode Technical
Standard 46, `Unicode IDNA Compatibility Processing
<https://unicode.org/reports/tr46/>`_.
This acts as a suitable replacement for the “encodings.idna”
module that comes with the Python standard library, but which
only supports the older superseded IDNA specification (`RFC 3490
<https://tools.ietf.org/html/rfc3490>`_).
Basic functions are simply executed:
.. code-block:: pycon
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト
Installation
------------
This package is available for installation from PyPI:
.. code-block:: bash
$ python3 -m pip install idna
Usage
-----
For typical usage, the ``encode`` and ``decode`` functions will take a
domain name argument and perform a conversion to A-labels or U-labels
respectively.
.. code-block:: pycon
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト
You may use the codec encoding and decoding methods using the
``idna.codec`` module:
.. code-block:: pycon
>>> import idna.codec
>>> print('домен.испытание'.encode('idna2008'))
b'xn--d1acufc.xn--80akhbyknj4f'
>>> print(b'xn--d1acufc.xn--80akhbyknj4f'.decode('idna2008'))
домен.испытание
Conversions can be applied at a per-label basis using the ``ulabel`` or
``alabel`` functions if necessary:
.. code-block:: pycon
>>> idna.alabel('测试')
b'xn--0zwm56d'
Compatibility Mapping (UTS #46)
+++++++++++++++++++++++++++++++
As described in `RFC 5895 <https://tools.ietf.org/html/rfc5895>`_, the
IDNA specification does not normalize input from different potential
ways a user may input a domain name. This functionality, known as
a “mapping”, is considered by the specification to be a local
user-interface issue distinct from IDNA conversion functionality.
This library provides one such mapping that was developed by the
Unicode Consortium. Known as `Unicode IDNA Compatibility Processing
<https://unicode.org/reports/tr46/>`_, it provides for both a regular
mapping for typical applications, as well as a transitional mapping to
help migrate from older IDNA 2003 applications. Strings are
preprocessed according to Section 4.4 “Preprocessing for IDNA2008”
prior to the IDNA operations.
For example, “Königsgäßchen” is not a permissible label as *LATIN
CAPITAL LETTER K* is not allowed (nor are capital letters in general).
UTS 46 will convert this into lower case prior to applying the IDNA
conversion.
.. code-block:: pycon
>>> import idna
>>> idna.encode('Königsgäßchen')
...
idna.core.InvalidCodepoint: Codepoint U+004B at position 1 of 'Königsgäßchen' not allowed
>>> idna.encode('Königsgäßchen', uts46=True)
b'xn--knigsgchen-b4a3dun'
>>> print(idna.decode('xn--knigsgchen-b4a3dun'))
königsgäßchen
Transitional processing provides conversions to help transition from
the older 2003 standard to the current standard. For example, in the
original IDNA specification, the *LATIN SMALL LETTER SHARP S* (ß) was
converted into two *LATIN SMALL LETTER S* (ss), whereas in the current
IDNA specification this conversion is not performed.
.. code-block:: pycon
>>> idna.encode('Königsgäßchen', uts46=True, transitional=True)
'xn--knigsgsschen-lcb0w'
Implementers should use transitional processing with caution, only in
rare cases where conversion from legacy labels to current labels must be
performed (i.e. IDNA implementations that pre-date 2008). For typical
applications that just need to convert labels, transitional processing
is unlikely to be beneficial and could produce unexpected incompatible
results.
``encodings.idna`` Compatibility
++++++++++++++++++++++++++++++++
Function calls from the Python built-in ``encodings.idna`` module are
mapped to their IDNA 2008 equivalents using the ``idna.compat`` module.
Simply substitute the ``import`` clause in your code to refer to the new
module name.
Exceptions
----------
All errors raised during the conversion following the specification
should raise an exception derived from the ``idna.IDNAError`` base
class.
More specific exceptions that may be generated as ``idna.IDNABidiError``
when the error reflects an illegal combination of left-to-right and
right-to-left characters in a label; ``idna.InvalidCodepoint`` when
a specific codepoint is an illegal character in an IDN label (i.e.
INVALID); and ``idna.InvalidCodepointContext`` when the codepoint is
illegal based on its positional context (i.e. it is CONTEXTO or CONTEXTJ
but the contextual requirements are not satisfied.)
Building and Diagnostics
------------------------
The IDNA and UTS 46 functionality relies upon pre-calculated lookup
tables for performance. These tables are derived from computing against
eligibility criteria in the respective standards. These tables are
computed using the command-line script ``tools/idna-data``.
This tool will fetch relevant codepoint data from the Unicode repository
and perform the required calculations to identify eligibility. There are
three main modes:
* ``idna-data make-libdata``. Generates ``idnadata.py`` and
``uts46data.py``, the pre-calculated lookup tables used for IDNA and
UTS 46 conversions. Implementers who wish to track this library against
a different Unicode version may use this tool to manually generate a
different version of the ``idnadata.py`` and ``uts46data.py`` files.
* ``idna-data make-table``. Generate a table of the IDNA disposition
(e.g. PVALID, CONTEXTJ, CONTEXTO) in the format found in Appendix
B.1 of RFC 5892 and the pre-computed tables published by `IANA
<https://www.iana.org/>`_.
* ``idna-data U+0061``. Prints debugging output on the various
properties associated with an individual Unicode codepoint (in this
case, U+0061), that are used to assess the IDNA and UTS 46 status of a
codepoint. This is helpful in debugging or analysis.
The tool accepts a number of arguments, described using ``idna-data
-h``. Most notably, the ``--version`` argument allows the specification
of the version of Unicode to be used in computing the table data. For
example, ``idna-data --version 9.0.0 make-libdata`` will generate
library data against Unicode 9.0.0.
Additional Notes
----------------
* **Packages**. The latest tagged release version is published in the
`Python Package Index <https://pypi.org/project/idna/>`_.
* **Version support**. This library supports Python 3.6 and higher.
As this library serves as a low-level toolkit for a variety of
applications, many of which strive for broad compatibility with older
Python versions, there is no rush to remove older interpreter support.
Removing support for older versions should be well justified in that the
maintenance burden has become too high.
* **Python 2**. Python 2 is supported by version 2.x of this library.
Use "idna<3" in your requirements file if you need this library for
a Python 2 application. Be advised that these versions are no longer
actively developed.
* **Testing**. The library has a test suite based on each rule of the
IDNA specification, as well as tests that are provided as part of the
Unicode Technical Standard 46, `Unicode IDNA Compatibility Processing
<https://unicode.org/reports/tr46/>`_.
* **Emoji**. It is an occasional request to support emoji domains in
this library. Encoding of symbols like emoji is expressly prohibited by
the technical standard IDNA 2008 and emoji domains are broadly phased
out across the domain industry due to associated security risks. For
now, applications that need to support these non-compliant labels
may wish to consider trying the encode/decode operation in this library
first, and then falling back to using `encodings.idna`. See `the Github
project <https://github.com/kjd/idna/issues/18>`_ for more discussion.

View File

@ -0,0 +1,22 @@
idna-3.8.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
idna-3.8.dist-info/LICENSE.md,sha256=pZ8LDvNjWHQQmkRhykT_enDVBpboFHZ7-vch1Mmw2w8,1541
idna-3.8.dist-info/METADATA,sha256=t8baHZrBTPkJi3Lr8ZHm0pbRKnelgO5AU7EGIeTvEcg,9948
idna-3.8.dist-info/RECORD,,
idna-3.8.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
idna/__init__.py,sha256=KJQN1eQBr8iIK5SKrJ47lXvxG0BJ7Lm38W4zT0v_8lk,849
idna/__pycache__/__init__.cpython-312.pyc,,
idna/__pycache__/codec.cpython-312.pyc,,
idna/__pycache__/compat.cpython-312.pyc,,
idna/__pycache__/core.cpython-312.pyc,,
idna/__pycache__/idnadata.cpython-312.pyc,,
idna/__pycache__/intranges.cpython-312.pyc,,
idna/__pycache__/package_data.cpython-312.pyc,,
idna/__pycache__/uts46data.cpython-312.pyc,,
idna/codec.py,sha256=PS6m-XmdST7Wj7J7ulRMakPDt5EBJyYrT3CPtjh-7t4,3426
idna/compat.py,sha256=0_sOEUMT4CVw9doD3vyRhX80X19PwqFoUBs7gWsFME4,321
idna/core.py,sha256=OHDXwDVbb3R1gNXjHw7JWeeE2rn2u3a-QV-KCeznYcA,12884
idna/idnadata.py,sha256=dqRwytzkjIHMBa2R1lYvHDwACenZPt8eGVu1Y8UBE-E,78320
idna/intranges.py,sha256=YBr4fRYuWH7kTKS2tXlFjM24ZF1Pdvcir-aywniInqg,1881
idna/package_data.py,sha256=DogtAD5vs_-I2Q0k3_ZA4egUq2YLJ4pBbbhI8APzOcY,21
idna/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
idna/uts46data.py,sha256=1KuksWqLuccPXm2uyRVkhfiFLNIhM_H2m4azCcnOqEU,206503

View File

@ -0,0 +1,4 @@
Wheel-Version: 1.0
Generator: flit 3.9.0
Root-Is-Purelib: true
Tag: py3-none-any

View File

@ -0,0 +1,44 @@
from .package_data import __version__
from .core import (
IDNABidiError,
IDNAError,
InvalidCodepoint,
InvalidCodepointContext,
alabel,
check_bidi,
check_hyphen_ok,
check_initial_combiner,
check_label,
check_nfc,
decode,
encode,
ulabel,
uts46_remap,
valid_contextj,
valid_contexto,
valid_label_length,
valid_string_length,
)
from .intranges import intranges_contain
__all__ = [
"IDNABidiError",
"IDNAError",
"InvalidCodepoint",
"InvalidCodepointContext",
"alabel",
"check_bidi",
"check_hyphen_ok",
"check_initial_combiner",
"check_label",
"check_nfc",
"decode",
"encode",
"intranges_contain",
"ulabel",
"uts46_remap",
"valid_contextj",
"valid_contexto",
"valid_label_length",
"valid_string_length",
]

View File

@ -0,0 +1,118 @@
from .core import encode, decode, alabel, ulabel, IDNAError
import codecs
import re
from typing import Any, Tuple, Optional
_unicode_dots_re = re.compile('[\u002e\u3002\uff0e\uff61]')
class Codec(codecs.Codec):
def encode(self, data: str, errors: str = 'strict') -> Tuple[bytes, int]:
if errors != 'strict':
raise IDNAError('Unsupported error handling \"{}\"'.format(errors))
if not data:
return b"", 0
return encode(data), len(data)
def decode(self, data: bytes, errors: str = 'strict') -> Tuple[str, int]:
if errors != 'strict':
raise IDNAError('Unsupported error handling \"{}\"'.format(errors))
if not data:
return '', 0
return decode(data), len(data)
class IncrementalEncoder(codecs.BufferedIncrementalEncoder):
def _buffer_encode(self, data: str, errors: str, final: bool) -> Tuple[bytes, int]:
if errors != 'strict':
raise IDNAError('Unsupported error handling \"{}\"'.format(errors))
if not data:
return b'', 0
labels = _unicode_dots_re.split(data)
trailing_dot = b''
if labels:
if not labels[-1]:
trailing_dot = b'.'
del labels[-1]
elif not final:
# Keep potentially unfinished label until the next call
del labels[-1]
if labels:
trailing_dot = b'.'
result = []
size = 0
for label in labels:
result.append(alabel(label))
if size:
size += 1
size += len(label)
# Join with U+002E
result_bytes = b'.'.join(result) + trailing_dot
size += len(trailing_dot)
return result_bytes, size
class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
def _buffer_decode(self, data: Any, errors: str, final: bool) -> Tuple[str, int]:
if errors != 'strict':
raise IDNAError('Unsupported error handling \"{}\"'.format(errors))
if not data:
return ('', 0)
if not isinstance(data, str):
data = str(data, 'ascii')
labels = _unicode_dots_re.split(data)
trailing_dot = ''
if labels:
if not labels[-1]:
trailing_dot = '.'
del labels[-1]
elif not final:
# Keep potentially unfinished label until the next call
del labels[-1]
if labels:
trailing_dot = '.'
result = []
size = 0
for label in labels:
result.append(ulabel(label))
if size:
size += 1
size += len(label)
result_str = '.'.join(result) + trailing_dot
size += len(trailing_dot)
return (result_str, size)
class StreamWriter(Codec, codecs.StreamWriter):
pass
class StreamReader(Codec, codecs.StreamReader):
pass
def search_function(name: str) -> Optional[codecs.CodecInfo]:
if name != 'idna2008':
return None
return codecs.CodecInfo(
name=name,
encode=Codec().encode,
decode=Codec().decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamwriter=StreamWriter,
streamreader=StreamReader,
)
codecs.register(search_function)

View File

@ -0,0 +1,13 @@
from .core import *
from .codec import *
from typing import Any, Union
def ToASCII(label: str) -> bytes:
return encode(label)
def ToUnicode(label: Union[bytes, bytearray]) -> str:
return decode(label)
def nameprep(s: Any) -> None:
raise NotImplementedError('IDNA 2008 does not utilise nameprep protocol')

View File

@ -0,0 +1,399 @@
from . import idnadata
import bisect
import unicodedata
import re
from typing import Union, Optional
from .intranges import intranges_contain
_virama_combining_class = 9
_alabel_prefix = b'xn--'
_unicode_dots_re = re.compile('[\u002e\u3002\uff0e\uff61]')
class IDNAError(UnicodeError):
""" Base exception for all IDNA-encoding related problems """
pass
class IDNABidiError(IDNAError):
""" Exception when bidirectional requirements are not satisfied """
pass
class InvalidCodepoint(IDNAError):
""" Exception when a disallowed or unallocated codepoint is used """
pass
class InvalidCodepointContext(IDNAError):
""" Exception when the codepoint is not valid in the context it is used """
pass
def _combining_class(cp: int) -> int:
v = unicodedata.combining(chr(cp))
if v == 0:
if not unicodedata.name(chr(cp)):
raise ValueError('Unknown character in unicodedata')
return v
def _is_script(cp: str, script: str) -> bool:
return intranges_contain(ord(cp), idnadata.scripts[script])
def _punycode(s: str) -> bytes:
return s.encode('punycode')
def _unot(s: int) -> str:
return 'U+{:04X}'.format(s)
def valid_label_length(label: Union[bytes, str]) -> bool:
if len(label) > 63:
return False
return True
def valid_string_length(label: Union[bytes, str], trailing_dot: bool) -> bool:
if len(label) > (254 if trailing_dot else 253):
return False
return True
def check_bidi(label: str, check_ltr: bool = False) -> bool:
# Bidi rules should only be applied if string contains RTL characters
bidi_label = False
for (idx, cp) in enumerate(label, 1):
direction = unicodedata.bidirectional(cp)
if direction == '':
# String likely comes from a newer version of Unicode
raise IDNABidiError('Unknown directionality in label {} at position {}'.format(repr(label), idx))
if direction in ['R', 'AL', 'AN']:
bidi_label = True
if not bidi_label and not check_ltr:
return True
# Bidi rule 1
direction = unicodedata.bidirectional(label[0])
if direction in ['R', 'AL']:
rtl = True
elif direction == 'L':
rtl = False
else:
raise IDNABidiError('First codepoint in label {} must be directionality L, R or AL'.format(repr(label)))
valid_ending = False
number_type = None # type: Optional[str]
for (idx, cp) in enumerate(label, 1):
direction = unicodedata.bidirectional(cp)
if rtl:
# Bidi rule 2
if not direction in ['R', 'AL', 'AN', 'EN', 'ES', 'CS', 'ET', 'ON', 'BN', 'NSM']:
raise IDNABidiError('Invalid direction for codepoint at position {} in a right-to-left label'.format(idx))
# Bidi rule 3
if direction in ['R', 'AL', 'EN', 'AN']:
valid_ending = True
elif direction != 'NSM':
valid_ending = False
# Bidi rule 4
if direction in ['AN', 'EN']:
if not number_type:
number_type = direction
else:
if number_type != direction:
raise IDNABidiError('Can not mix numeral types in a right-to-left label')
else:
# Bidi rule 5
if not direction in ['L', 'EN', 'ES', 'CS', 'ET', 'ON', 'BN', 'NSM']:
raise IDNABidiError('Invalid direction for codepoint at position {} in a left-to-right label'.format(idx))
# Bidi rule 6
if direction in ['L', 'EN']:
valid_ending = True
elif direction != 'NSM':
valid_ending = False
if not valid_ending:
raise IDNABidiError('Label ends with illegal codepoint directionality')
return True
def check_initial_combiner(label: str) -> bool:
if unicodedata.category(label[0])[0] == 'M':
raise IDNAError('Label begins with an illegal combining character')
return True
def check_hyphen_ok(label: str) -> bool:
if label[2:4] == '--':
raise IDNAError('Label has disallowed hyphens in 3rd and 4th position')
if label[0] == '-' or label[-1] == '-':
raise IDNAError('Label must not start or end with a hyphen')
return True
def check_nfc(label: str) -> None:
if unicodedata.normalize('NFC', label) != label:
raise IDNAError('Label must be in Normalization Form C')
def valid_contextj(label: str, pos: int) -> bool:
cp_value = ord(label[pos])
if cp_value == 0x200c:
if pos > 0:
if _combining_class(ord(label[pos - 1])) == _virama_combining_class:
return True
ok = False
for i in range(pos-1, -1, -1):
joining_type = idnadata.joining_types.get(ord(label[i]))
if joining_type == ord('T'):
continue
elif joining_type in [ord('L'), ord('D')]:
ok = True
break
else:
break
if not ok:
return False
ok = False
for i in range(pos+1, len(label)):
joining_type = idnadata.joining_types.get(ord(label[i]))
if joining_type == ord('T'):
continue
elif joining_type in [ord('R'), ord('D')]:
ok = True
break
else:
break
return ok
if cp_value == 0x200d:
if pos > 0:
if _combining_class(ord(label[pos - 1])) == _virama_combining_class:
return True
return False
else:
return False
def valid_contexto(label: str, pos: int, exception: bool = False) -> bool:
cp_value = ord(label[pos])
if cp_value == 0x00b7:
if 0 < pos < len(label)-1:
if ord(label[pos - 1]) == 0x006c and ord(label[pos + 1]) == 0x006c:
return True
return False
elif cp_value == 0x0375:
if pos < len(label)-1 and len(label) > 1:
return _is_script(label[pos + 1], 'Greek')
return False
elif cp_value == 0x05f3 or cp_value == 0x05f4:
if pos > 0:
return _is_script(label[pos - 1], 'Hebrew')
return False
elif cp_value == 0x30fb:
for cp in label:
if cp == '\u30fb':
continue
if _is_script(cp, 'Hiragana') or _is_script(cp, 'Katakana') or _is_script(cp, 'Han'):
return True
return False
elif 0x660 <= cp_value <= 0x669:
for cp in label:
if 0x6f0 <= ord(cp) <= 0x06f9:
return False
return True
elif 0x6f0 <= cp_value <= 0x6f9:
for cp in label:
if 0x660 <= ord(cp) <= 0x0669:
return False
return True
return False
def check_label(label: Union[str, bytes, bytearray]) -> None:
if isinstance(label, (bytes, bytearray)):
label = label.decode('utf-8')
if len(label) == 0:
raise IDNAError('Empty Label')
check_nfc(label)
check_hyphen_ok(label)
check_initial_combiner(label)
for (pos, cp) in enumerate(label):
cp_value = ord(cp)
if intranges_contain(cp_value, idnadata.codepoint_classes['PVALID']):
continue
elif intranges_contain(cp_value, idnadata.codepoint_classes['CONTEXTJ']):
try:
if not valid_contextj(label, pos):
raise InvalidCodepointContext('Joiner {} not allowed at position {} in {}'.format(
_unot(cp_value), pos+1, repr(label)))
except ValueError:
raise IDNAError('Unknown codepoint adjacent to joiner {} at position {} in {}'.format(
_unot(cp_value), pos+1, repr(label)))
elif intranges_contain(cp_value, idnadata.codepoint_classes['CONTEXTO']):
if not valid_contexto(label, pos):
raise InvalidCodepointContext('Codepoint {} not allowed at position {} in {}'.format(_unot(cp_value), pos+1, repr(label)))
else:
raise InvalidCodepoint('Codepoint {} at position {} of {} not allowed'.format(_unot(cp_value), pos+1, repr(label)))
check_bidi(label)
def alabel(label: str) -> bytes:
try:
label_bytes = label.encode('ascii')
ulabel(label_bytes)
if not valid_label_length(label_bytes):
raise IDNAError('Label too long')
return label_bytes
except UnicodeEncodeError:
pass
check_label(label)
label_bytes = _alabel_prefix + _punycode(label)
if not valid_label_length(label_bytes):
raise IDNAError('Label too long')
return label_bytes
def ulabel(label: Union[str, bytes, bytearray]) -> str:
if not isinstance(label, (bytes, bytearray)):
try:
label_bytes = label.encode('ascii')
except UnicodeEncodeError:
check_label(label)
return label
else:
label_bytes = label
label_bytes = label_bytes.lower()
if label_bytes.startswith(_alabel_prefix):
label_bytes = label_bytes[len(_alabel_prefix):]
if not label_bytes:
raise IDNAError('Malformed A-label, no Punycode eligible content found')
if label_bytes.decode('ascii')[-1] == '-':
raise IDNAError('A-label must not end with a hyphen')
else:
check_label(label_bytes)
return label_bytes.decode('ascii')
try:
label = label_bytes.decode('punycode')
except UnicodeError:
raise IDNAError('Invalid A-label')
check_label(label)
return label
def uts46_remap(domain: str, std3_rules: bool = True, transitional: bool = False) -> str:
"""Re-map the characters in the string according to UTS46 processing."""
from .uts46data import uts46data
output = ''
for pos, char in enumerate(domain):
code_point = ord(char)
try:
uts46row = uts46data[code_point if code_point < 256 else
bisect.bisect_left(uts46data, (code_point, 'Z')) - 1]
status = uts46row[1]
replacement = None # type: Optional[str]
if len(uts46row) == 3:
replacement = uts46row[2]
if (status == 'V' or
(status == 'D' and not transitional) or
(status == '3' and not std3_rules and replacement is None)):
output += char
elif replacement is not None and (status == 'M' or
(status == '3' and not std3_rules) or
(status == 'D' and transitional)):
output += replacement
elif status != 'I':
raise IndexError()
except IndexError:
raise InvalidCodepoint(
'Codepoint {} not allowed at position {} in {}'.format(
_unot(code_point), pos + 1, repr(domain)))
return unicodedata.normalize('NFC', output)
def encode(s: Union[str, bytes, bytearray], strict: bool = False, uts46: bool = False, std3_rules: bool = False, transitional: bool = False) -> bytes:
if not isinstance(s, str):
try:
s = str(s, 'ascii')
except UnicodeDecodeError:
raise IDNAError('should pass a unicode string to the function rather than a byte string.')
if uts46:
s = uts46_remap(s, std3_rules, transitional)
trailing_dot = False
result = []
if strict:
labels = s.split('.')
else:
labels = _unicode_dots_re.split(s)
if not labels or labels == ['']:
raise IDNAError('Empty domain')
if labels[-1] == '':
del labels[-1]
trailing_dot = True
for label in labels:
s = alabel(label)
if s:
result.append(s)
else:
raise IDNAError('Empty label')
if trailing_dot:
result.append(b'')
s = b'.'.join(result)
if not valid_string_length(s, trailing_dot):
raise IDNAError('Domain too long')
return s
def decode(s: Union[str, bytes, bytearray], strict: bool = False, uts46: bool = False, std3_rules: bool = False) -> str:
try:
if not isinstance(s, str):
s = str(s, 'ascii')
except UnicodeDecodeError:
raise IDNAError('Invalid ASCII in A-label')
if uts46:
s = uts46_remap(s, std3_rules, False)
trailing_dot = False
result = []
if not strict:
labels = _unicode_dots_re.split(s)
else:
labels = s.split('.')
if not labels or labels == ['']:
raise IDNAError('Empty domain')
if not labels[-1]:
del labels[-1]
trailing_dot = True
for label in labels:
s = ulabel(label)
if s:
result.append(s)
else:
raise IDNAError('Empty label')
if trailing_dot:
result.append('')
return '.'.join(result)

View File

@ -0,0 +1,54 @@
"""
Given a list of integers, made up of (hopefully) a small number of long runs
of consecutive integers, compute a representation of the form
((start1, end1), (start2, end2) ...). Then answer the question "was x present
in the original list?" in time O(log(# runs)).
"""
import bisect
from typing import List, Tuple
def intranges_from_list(list_: List[int]) -> Tuple[int, ...]:
"""Represent a list of integers as a sequence of ranges:
((start_0, end_0), (start_1, end_1), ...), such that the original
integers are exactly those x such that start_i <= x < end_i for some i.
Ranges are encoded as single integers (start << 32 | end), not as tuples.
"""
sorted_list = sorted(list_)
ranges = []
last_write = -1
for i in range(len(sorted_list)):
if i+1 < len(sorted_list):
if sorted_list[i] == sorted_list[i+1]-1:
continue
current_range = sorted_list[last_write+1:i+1]
ranges.append(_encode_range(current_range[0], current_range[-1] + 1))
last_write = i
return tuple(ranges)
def _encode_range(start: int, end: int) -> int:
return (start << 32) | end
def _decode_range(r: int) -> Tuple[int, int]:
return (r >> 32), (r & ((1 << 32) - 1))
def intranges_contain(int_: int, ranges: Tuple[int, ...]) -> bool:
"""Determine if `int_` falls into one of the ranges in `ranges`."""
tuple_ = _encode_range(int_, 0)
pos = bisect.bisect_left(ranges, tuple_)
# we could be immediately ahead of a tuple (start, end)
# with start < int_ <= end
if pos > 0:
left, right = _decode_range(ranges[pos-1])
if left <= int_ < right:
return True
# or we could be immediately behind a tuple (int_, end)
if pos < len(ranges):
left, _ = _decode_range(ranges[pos])
if left == int_:
return True
return False

View File

@ -0,0 +1,2 @@
__version__ = '3.8'

View File

@ -0,0 +1,175 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

View File

@ -0,0 +1,119 @@
Metadata-Version: 2.1
Name: requests
Version: 2.32.3
Summary: Python HTTP for Humans.
Home-page: https://requests.readthedocs.io
Author: Kenneth Reitz
Author-email: me@kennethreitz.org
License: Apache-2.0
Project-URL: Documentation, https://requests.readthedocs.io
Project-URL: Source, https://github.com/psf/requests
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Web Environment
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Natural Language :: English
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Internet :: WWW/HTTP
Classifier: Topic :: Software Development :: Libraries
Requires-Python: >=3.8
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: charset-normalizer <4,>=2
Requires-Dist: idna <4,>=2.5
Requires-Dist: urllib3 <3,>=1.21.1
Requires-Dist: certifi >=2017.4.17
Provides-Extra: security
Provides-Extra: socks
Requires-Dist: PySocks !=1.5.7,>=1.5.6 ; extra == 'socks'
Provides-Extra: use_chardet_on_py3
Requires-Dist: chardet <6,>=3.0.2 ; extra == 'use_chardet_on_py3'
# Requests
**Requests** is a simple, yet elegant, HTTP library.
```python
>>> import requests
>>> r = requests.get('https://httpbin.org/basic-auth/user/pass', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
'{"authenticated": true, ...'
>>> r.json()
{'authenticated': True, ...}
```
Requests allows you to send HTTP/1.1 requests extremely easily. Theres no need to manually add query strings to your URLs, or to form-encode your `PUT` & `POST` data — but nowadays, just use the `json` method!
Requests is one of the most downloaded Python packages today, pulling in around `30M downloads / week`— according to GitHub, Requests is currently [depended upon](https://github.com/psf/requests/network/dependents?package_id=UGFja2FnZS01NzA4OTExNg%3D%3D) by `1,000,000+` repositories. You may certainly put your trust in this code.
[![Downloads](https://static.pepy.tech/badge/requests/month)](https://pepy.tech/project/requests)
[![Supported Versions](https://img.shields.io/pypi/pyversions/requests.svg)](https://pypi.org/project/requests)
[![Contributors](https://img.shields.io/github/contributors/psf/requests.svg)](https://github.com/psf/requests/graphs/contributors)
## Installing Requests and Supported Versions
Requests is available on PyPI:
```console
$ python -m pip install requests
```
Requests officially supports Python 3.8+.
## Supported Features & BestPractices
Requests is ready for the demands of building robust and reliable HTTPspeaking applications, for the needs of today.
- Keep-Alive & Connection Pooling
- International Domains and URLs
- Sessions with Cookie Persistence
- Browser-style TLS/SSL Verification
- Basic & Digest Authentication
- Familiar `dict`like Cookies
- Automatic Content Decompression and Decoding
- Multi-part File Uploads
- SOCKS Proxy Support
- Connection Timeouts
- Streaming Downloads
- Automatic honoring of `.netrc`
- Chunked HTTP Requests
## API Reference and User Guide available on [Read the Docs](https://requests.readthedocs.io)
[![Read the Docs](https://raw.githubusercontent.com/psf/requests/main/ext/ss.png)](https://requests.readthedocs.io)
## Cloning the repository
When cloning the Requests repository, you may need to add the `-c
fetch.fsck.badTimezone=ignore` flag to avoid an error about a bad commit (see
[this issue](https://github.com/psf/requests/issues/2690) for more background):
```shell
git clone -c fetch.fsck.badTimezone=ignore https://github.com/psf/requests.git
```
You can also apply this setting to your global Git config:
```shell
git config --global fetch.fsck.badTimezone ignore
```
---
[![Kenneth Reitz](https://raw.githubusercontent.com/psf/requests/main/ext/kr.png)](https://kennethreitz.org) [![Python Software Foundation](https://raw.githubusercontent.com/psf/requests/main/ext/psf.png)](https://www.python.org/psf)

View File

@ -0,0 +1,43 @@
requests-2.32.3.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
requests-2.32.3.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
requests-2.32.3.dist-info/METADATA,sha256=ZY7oRUweLnb7jCEnEW9hFWs7IpQbNVnAA4ncpwA4WBo,4610
requests-2.32.3.dist-info/RECORD,,
requests-2.32.3.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
requests-2.32.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
requests-2.32.3.dist-info/top_level.txt,sha256=fMSVmHfb5rbGOo6xv-O_tUX6j-WyixssE-SnwcDRxNQ,9
requests/__init__.py,sha256=4xaAERmPDIBPsa2PsjpU9r06yooK-2mZKHTZAhWRWts,5072
requests/__pycache__/__init__.cpython-312.pyc,,
requests/__pycache__/__version__.cpython-312.pyc,,
requests/__pycache__/_internal_utils.cpython-312.pyc,,
requests/__pycache__/adapters.cpython-312.pyc,,
requests/__pycache__/api.cpython-312.pyc,,
requests/__pycache__/auth.cpython-312.pyc,,
requests/__pycache__/certs.cpython-312.pyc,,
requests/__pycache__/compat.cpython-312.pyc,,
requests/__pycache__/cookies.cpython-312.pyc,,
requests/__pycache__/exceptions.cpython-312.pyc,,
requests/__pycache__/help.cpython-312.pyc,,
requests/__pycache__/hooks.cpython-312.pyc,,
requests/__pycache__/models.cpython-312.pyc,,
requests/__pycache__/packages.cpython-312.pyc,,
requests/__pycache__/sessions.cpython-312.pyc,,
requests/__pycache__/status_codes.cpython-312.pyc,,
requests/__pycache__/structures.cpython-312.pyc,,
requests/__pycache__/utils.cpython-312.pyc,,
requests/__version__.py,sha256=FVfglgZmNQnmYPXpOohDU58F5EUb_-VnSTaAesS187g,435
requests/_internal_utils.py,sha256=nMQymr4hs32TqVo5AbCrmcJEhvPUh7xXlluyqwslLiQ,1495
requests/adapters.py,sha256=KIcecscqam6reOCXRl4DwP4jX8Jcl8sd57ft17KR2cQ,27451
requests/api.py,sha256=_Zb9Oa7tzVIizTKwFrPjDEY9ejtm_OnSRERnADxGsQs,6449
requests/auth.py,sha256=kF75tqnLctZ9Mf_hm9TZIj4cQWnN5uxRz8oWsx5wmR0,10186
requests/certs.py,sha256=Z9Sb410Anv6jUFTyss0jFFhU6xst8ctELqfy8Ev23gw,429
requests/compat.py,sha256=C5w_DPLSurXPgcdWU78fora0APmbYkX2G89QvH5xzPA,1817
requests/cookies.py,sha256=bNi-iqEj4NPZ00-ob-rHvzkvObzN3lEpgw3g6paS3Xw,18590
requests/exceptions.py,sha256=jJPS1UWATs86ShVUaLorTiJb1SaGuoNEWgICJep-VkY,4260
requests/help.py,sha256=gPX5d_H7Xd88aDABejhqGgl9B1VFRTt5BmiYvL3PzIQ,3875
requests/hooks.py,sha256=CiuysiHA39V5UfcCBXFIx83IrDpuwfN9RcTUgv28ftQ,733
requests/models.py,sha256=k42roXzC8u_OagAPQi9U4MkfO7i4r2FdaqvMqstPehc,35418
requests/packages.py,sha256=_g0gZ681UyAlKHRjH6kanbaoxx2eAb6qzcXiODyTIoc,904
requests/sessions.py,sha256=ykTI8UWGSltOfH07HKollH7kTBGw4WhiBVaQGmckTw4,30495
requests/status_codes.py,sha256=iJUAeA25baTdw-6PfD0eF4qhpINDJRJI-yaMqxs4LEI,4322
requests/structures.py,sha256=-IbmhVz06S-5aPSZuUthZ6-6D9XOjRuTXHOabY041XM,2912
requests/utils.py,sha256=HiQC6Nq_Da3ktaMiFzQkh-dCk3iQHHKEsYS5kDc-8Cw,33619

View File

@ -0,0 +1,5 @@
Wheel-Version: 1.0
Generator: bdist_wheel (0.43.0)
Root-Is-Purelib: true
Tag: py3-none-any

View File

@ -0,0 +1,184 @@
# __
# /__) _ _ _ _ _/ _
# / ( (- (/ (/ (- _) / _)
# /
"""
Requests HTTP Library
~~~~~~~~~~~~~~~~~~~~~
Requests is an HTTP library, written in Python, for human beings.
Basic GET usage:
>>> import requests
>>> r = requests.get('https://www.python.org')
>>> r.status_code
200
>>> b'Python is a programming language' in r.content
True
... or POST:
>>> payload = dict(key1='value1', key2='value2')
>>> r = requests.post('https://httpbin.org/post', data=payload)
>>> print(r.text)
{
...
"form": {
"key1": "value1",
"key2": "value2"
},
...
}
The other HTTP methods are supported - see `requests.api`. Full documentation
is at <https://requests.readthedocs.io>.
:copyright: (c) 2017 by Kenneth Reitz.
:license: Apache 2.0, see LICENSE for more details.
"""
import warnings
import urllib3
from .exceptions import RequestsDependencyWarning
try:
from charset_normalizer import __version__ as charset_normalizer_version
except ImportError:
charset_normalizer_version = None
try:
from chardet import __version__ as chardet_version
except ImportError:
chardet_version = None
def check_compatibility(urllib3_version, chardet_version, charset_normalizer_version):
urllib3_version = urllib3_version.split(".")
assert urllib3_version != ["dev"] # Verify urllib3 isn't installed from git.
# Sometimes, urllib3 only reports its version as 16.1.
if len(urllib3_version) == 2:
urllib3_version.append("0")
# Check urllib3 for compatibility.
major, minor, patch = urllib3_version # noqa: F811
major, minor, patch = int(major), int(minor), int(patch)
# urllib3 >= 1.21.1
assert major >= 1
if major == 1:
assert minor >= 21
# Check charset_normalizer for compatibility.
if chardet_version:
major, minor, patch = chardet_version.split(".")[:3]
major, minor, patch = int(major), int(minor), int(patch)
# chardet_version >= 3.0.2, < 6.0.0
assert (3, 0, 2) <= (major, minor, patch) < (6, 0, 0)
elif charset_normalizer_version:
major, minor, patch = charset_normalizer_version.split(".")[:3]
major, minor, patch = int(major), int(minor), int(patch)
# charset_normalizer >= 2.0.0 < 4.0.0
assert (2, 0, 0) <= (major, minor, patch) < (4, 0, 0)
else:
warnings.warn(
"Unable to find acceptable character detection dependency "
"(chardet or charset_normalizer).",
RequestsDependencyWarning,
)
def _check_cryptography(cryptography_version):
# cryptography < 1.3.4
try:
cryptography_version = list(map(int, cryptography_version.split(".")))
except ValueError:
return
if cryptography_version < [1, 3, 4]:
warning = "Old version of cryptography ({}) may cause slowdown.".format(
cryptography_version
)
warnings.warn(warning, RequestsDependencyWarning)
# Check imported dependencies for compatibility.
try:
check_compatibility(
urllib3.__version__, chardet_version, charset_normalizer_version
)
except (AssertionError, ValueError):
warnings.warn(
"urllib3 ({}) or chardet ({})/charset_normalizer ({}) doesn't match a supported "
"version!".format(
urllib3.__version__, chardet_version, charset_normalizer_version
),
RequestsDependencyWarning,
)
# Attempt to enable urllib3's fallback for SNI support
# if the standard library doesn't support SNI or the
# 'ssl' library isn't available.
try:
try:
import ssl
except ImportError:
ssl = None
if not getattr(ssl, "HAS_SNI", False):
from urllib3.contrib import pyopenssl
pyopenssl.inject_into_urllib3()
# Check cryptography version
from cryptography import __version__ as cryptography_version
_check_cryptography(cryptography_version)
except ImportError:
pass
# urllib3's DependencyWarnings should be silenced.
from urllib3.exceptions import DependencyWarning
warnings.simplefilter("ignore", DependencyWarning)
# Set default logging handler to avoid "No handler found" warnings.
import logging
from logging import NullHandler
from . import packages, utils
from .__version__ import (
__author__,
__author_email__,
__build__,
__cake__,
__copyright__,
__description__,
__license__,
__title__,
__url__,
__version__,
)
from .api import delete, get, head, options, patch, post, put, request
from .exceptions import (
ConnectionError,
ConnectTimeout,
FileModeWarning,
HTTPError,
JSONDecodeError,
ReadTimeout,
RequestException,
Timeout,
TooManyRedirects,
URLRequired,
)
from .models import PreparedRequest, Request, Response
from .sessions import Session, session
from .status_codes import codes
logging.getLogger(__name__).addHandler(NullHandler())
# FileModeWarnings go off per the default.
warnings.simplefilter("default", FileModeWarning, append=True)

Some files were not shown because too many files have changed in this diff Show More